20.(1)執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-1,3],若輸出的s的取值范圍記為集合A,求集合A;
(2)命題p:a∈A,其中集合A為第(1)題中的s的取值范圍;命題q:函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+a$有極值;若p∧q為真命題,求實數(shù)a的取值范圍.

分析 (1)由程序框圖可知,分段函數(shù)的對稱軸為t=2,在[1,2]上單調(diào)遞增,在[2,3]上單調(diào)遞減,解得smax=3,smin=2,即可解得集合A.
(2)函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+a$有極值,等價于f′(x)=x2+2ax+1=0有兩個不相等的實數(shù)根,即△=(2a)2-4>0,由此能求出命題p:a<-1或a>1,利用p∧q為真命題,建立不等式組,即可解得實數(shù)a的取值范圍.

解答 (本題滿分為12分)
解:(1)由程序框圖可知,當(dāng)-1≤t<1時,s=2t,則s∈[-2,2),
當(dāng)1≤t≤3時,s=-(t-2)2+3,
∵該函數(shù)的對稱軸為t=2,
∴該函數(shù)在[1,2]上單調(diào)遞增,在[2,3]上單調(diào)遞減.
∴smax=3,smin=2,
∴s∈[2,3].
綜上知,s∈[-2,3],集合A=[-2,3].…(4分)
(2)∵函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+a$有極值,且f′(x)=x2+2ax+1,
∴f′(x)=0有兩個不相等的實數(shù)根,即△=(2a)2-4>0,解得a<-1或a>1,
即命題p:a<-1或a>1.…(8分)
∵p∧q為真命題,
∴則$\left\{\begin{array}{l}{a<-1或a>1}\\{-2≤a≤3}\end{array}\right.$,解得-2≤a<-1或1<a≤3;
∴實數(shù)a的取值范圍是[-2,-1)∪(1,3].…(12分)

點評 本題主要考查了選擇結(jié)構(gòu)的程序框圖,考查函數(shù)的極大值和極小值的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a、b、m均為正數(shù),且a<b,求證:$\frac{a+m}{b+m}$>$\frac{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,菱形ABCD中,∠BAD=60°,邊長AB=2,GE⊥平面ABCD,EF⊥ABCD,E,F(xiàn)分別是邊AB、CD中點,AC與BD交于O,EG=FH=2,
(1)求證:AB⊥BH;
(2)求二面角C-OH-F的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某樂園按時段收費,收費標(biāo)準(zhǔn)為:每玩一次不超過1小時收費10元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人參與但都不超過4小時,甲、乙二人在每個時段離場是等可能的.為吸引顧客,每個顧客可以參加一次抽獎活動.
(1)用(10,10)表示甲乙玩都不超過1小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將十進(jìn)制數(shù)2016(10)化為八進(jìn)制數(shù)為3740(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,則實數(shù)a的范圍是(  )
A.[3,+∞)B.(3,+∞)C.[-∞,3]D.[-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2|x-2|+ax(x∈R).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)當(dāng)f(x)有最小值時,求a的取值范圍;
(3)若函數(shù)h(x)=f(sinx)-2存在零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$cos(\frac{π}{4}+θ)=\frac{2}{3}\sqrt{2}$,則sin2θ=( 。
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$-\frac{8}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知圓M:(x+$\sqrt{7}$)2+y2=64,定點N($\sqrt{7}$,0),點P為圓M上的動點,點Q在NP上,點G 在線段MP上,且滿足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,則點G的軌跡方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{64}+\frac{y^2}{57}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{64}-\frac{y^2}{57}=1$

查看答案和解析>>

同步練習(xí)冊答案