10.已知圓M:(x+$\sqrt{7}$)2+y2=64,定點(diǎn)N($\sqrt{7}$,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G 在線段MP上,且滿足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,則點(diǎn)G的軌跡方程是( 。
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{64}+\frac{y^2}{57}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{64}-\frac{y^2}{57}=1$

分析 由已知得Q為PN的中點(diǎn)且GQ⊥PN,|GN|+|GM|=|MP|=8,從而得到G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸長(zhǎng)a=4,半焦距c=$\sqrt{7}$,由此能求出點(diǎn)G的軌跡方程.

解答 解:∵圓$M:{(x+\sqrt{7})^2}+{y^2}=64$,定點(diǎn)$N(\sqrt{7},0)$,點(diǎn)P為圓M上的動(dòng)點(diǎn),
∴M(-$\sqrt{7}$,0),PM=8,
∵點(diǎn)Q在NP上,$點(diǎn)G在線段MP上,且滿足\overrightarrow{NP}=2\overrightarrow{NQ}$,$\overrightarrow{GQ}•\overrightarrow{NP}$=0,
∴Q為PN的中點(diǎn)且GQ⊥PN,∴GQ為PN的中垂線,
∴|PG|=|GN|,∴|GN|+|GM|=|MP|=8,
故G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸長(zhǎng)a=4,半焦距c=$\sqrt{7}$,
∴短半軸長(zhǎng)b=$\sqrt{16-7}$=3,
∴點(diǎn)G的軌跡方程是$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1.
故選:A.

點(diǎn)評(píng) 本題考查點(diǎn)的軌跡方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓定義和性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-1,3],若輸出的s的取值范圍記為集合A,求集合A;
(2)命題p:a∈A,其中集合A為第(1)題中的s的取值范圍;命題q:函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+a$有極值;若p∧q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,1),離心率為 $\frac{\sqrt{3}}{2}$,點(diǎn)O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)不與坐標(biāo)軸平行的直線l1:y=kx+m與橢圓交于A,B兩點(diǎn),與x軸交于點(diǎn)P,設(shè)線段AB中點(diǎn)為M.
  (i)證明:直線OM的斜率與直線l1的斜率之積為定值;
  (ii)如圖,當(dāng)m=-k時(shí),過(guò)點(diǎn)M作垂直于l1的直線l2,交x軸于點(diǎn)Q,求$\frac{|AB|}{|PQ|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知在等比數(shù)列{an}中,前n項(xiàng)和${S_n}={2^n}+t$,則數(shù)列的通項(xiàng)公式an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)g(x)是函數(shù)f(x)=loga(x-2)(a>0,且a≠1)的反函數(shù),則函數(shù)g(x)的圖象過(guò)定點(diǎn)(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若直線l1:ax+2y+6=0與直線l2:x+(a-1)y-1=0垂直,則實(shí)數(shù)a=(  )
A.$\frac{2}{3}$B.-1C.2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.兩直線3x+4y-9=0和6x+my+2=0平行,則它們之間的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,△ABO三邊上的點(diǎn)C、D、E都在⊙O上,已知AB∥DE,AC=CB.
(l)求證:直線AB與⊙O相切;
(2)若AD=2,且tan∠ACD=$\frac{1}{3}$,求AO的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示的平面圖形是邊長(zhǎng)為8的正三角形,沿三邊中點(diǎn)連線向同一方向折成一個(gè)多面體.
(1)請(qǐng)畫(huà)出沿虛線折起拼接后的多面體,并寫(xiě)出它的名稱;
(2)求該多面體側(cè)面與底面所成二面角的余弦值;
(3)求該多面體的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案