若所有形如3a+
2
b(a∈Z,b∈Z)的數(shù)組成集合A,試判斷-6+2
2
是不是集合A中的元素?
考點:元素與集合關(guān)系的判斷
專題:集合
分析:假設(shè)命題成立,進(jìn)行推導(dǎo)-6+2
2
是否能符合集合A中元素的特性即找出整數(shù)a,b 使得導(dǎo)-6+2
2
=3a+
2
b.對于存在性的命題,找出一個實例即可.
解答: 解:-6+2
2
是集合A中的元素,
假設(shè)-6+2
2
∈A,則必?a∈Z,b∈Z,使得-6+2
2
=3a+
2
b,此時取a=-2,b=2即可,所以假設(shè)成立.
點評:對于判斷是否成立的題目,一般都是假設(shè)命題成立,進(jìn)行推導(dǎo),若推導(dǎo)出矛盾則否定假設(shè),否則可推導(dǎo)出一個成立的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,直線l:y=2x+5與橢圓交于P1,P2兩點,且橢圓C的中心關(guān)于直線l的對稱點恰好落在橢圓C的左準(zhǔn)線l′上
(Ⅰ)求橢圓C的左準(zhǔn)線方程;
(Ⅱ)已知
F1P1
OF2
,-
5
9
a2
,
F2P2
OF2
成等差數(shù)列,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一半徑為
3
的圓形靶內(nèi)有一個半徑為1的同心圓,將大圓分成兩部分,小圓內(nèi)部區(qū)域記為2環(huán),圓環(huán)區(qū)域記為1環(huán),某同學(xué)向該靶投擲3枚飛鏢,每次1枚.假設(shè)他每次必定會中靶,且投中靶內(nèi)各點是隨機(jī)的.
(Ⅰ)求該同學(xué)在一次投擲中獲得2環(huán)的概率;
(Ⅱ)設(shè)X表示該同學(xué)在3次投擲中獲得的環(huán)數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2(lnx),求f′(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=ax的圖象恒在函數(shù)f(x)圖象的上方,求a的取值范圍;
(Ⅲ)若存在-
1
a
<x1<0,x2>0,使得f(x1)=f(x2)=0,求證:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,已知點A(3,-1)和點B(10,5),∠B的平分線所在直線方程為x-4y+10=0,求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知曲線C1
x=cosθ
y=sinθ
(θ為參數(shù)),將曲線C1上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
3
、2倍后得到曲線C2的直角坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c是角A、B、C的對邊,已知b=2
3
,A,B,C成等差數(shù)列,則△ABC的外接圓的半徑等于
 

查看答案和解析>>

同步練習(xí)冊答案