11.在區(qū)間[0,3]上隨機(jī)選取一個(gè)數(shù)x,則x≤1的概率為$\frac{1}{3}$.

分析 直接由區(qū)間長(zhǎng)度比得答案.

解答 解:區(qū)間[0,3]的長(zhǎng)度為3,
滿足x≤1所占的區(qū)間長(zhǎng)度為1,
由幾何概型概率計(jì)算公式可得,x≤1的概率為$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查幾何概型,關(guān)鍵是明確測(cè)度比為區(qū)間長(zhǎng)度比,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)有四個(gè)命題,其中真命題的個(gè)數(shù)是(  )
①有兩個(gè)平面互相平行,其余各面都是四邊形的多面體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形的多面體一定是棱錐;
③用一個(gè)面去截棱錐,底面與截面之間的部分叫棱臺(tái);
④側(cè)面都是長(zhǎng)方形的棱柱叫長(zhǎng)方體.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lnx,x≥1}\end{array}\right.$,若函數(shù)y=f(x)-k有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知A,B,C三個(gè)班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如表(單位:小時(shí)).
A
66.5 7 
B
678 
C
5678
(1)試估計(jì)C班學(xué)生人數(shù);
(2)從A班和B班抽出來的學(xué)生中各選一名,記A班選出的學(xué)生為甲,B班選出的學(xué)生為乙,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“2x>2”是“(x-2)(x-4)<0”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點(diǎn)P為圓x2+y2=4上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,垂足為Q(P與Q不重合),M為線段PQ中點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)直線y=kx交(1)中軌跡C于A,B兩點(diǎn),當(dāng)直線MA,MB斜率KMA,KMB都存在時(shí),求證:KMA•KMB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,已知B,C為圓x2+y2=4上兩點(diǎn),點(diǎn)A(1,1),且AB⊥AC,則線段BC的長(zhǎng)的取值范圍為[$\sqrt{6}-\sqrt{2}$,$\sqrt{6}+\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在一個(gè)長(zhǎng)方體的三條棱長(zhǎng)分別為3、8、9,若在該長(zhǎng)方體上面鉆一個(gè)圓柱形的孔后其表面積沒有變化,則圓孔的半徑為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.近年來我國(guó)電子商務(wù)行業(yè)迎來蓬勃發(fā)展新機(jī)遇,2016年雙11期間,某網(wǎng)絡(luò)購(gòu)物平臺(tái)推銷了A,B,C三種商品,某網(wǎng)購(gòu)者決定搶購(gòu)這三種商品,假設(shè)該名網(wǎng)購(gòu)者都參與了A,B,C三種商品的搶購(gòu),搶購(gòu)成功與否相互獨(dú)立,且不重復(fù)搶購(gòu)?fù)环N商品,對(duì)A,B,C三件商品搶購(gòu)成功的概率分別為a,b,$\frac{1}{4}({a>b})$,已知三件商品都被搶購(gòu)成功的概率為$\frac{1}{24}$,至少有一件商品被搶購(gòu)成功的概率為$\frac{3}{4}$.
(1)求a,b的值;
(2)若購(gòu)物平臺(tái)準(zhǔn)備對(duì)搶購(gòu)成功的A,B,C三件商品進(jìn)行優(yōu)惠減免,A商品搶購(gòu)成功減免2百元,B商品搶購(gòu)成功減免4比百元,C商品搶購(gòu)成功減免6百元.求該名網(wǎng)購(gòu)者獲得減免總金額(單位:百元)的分別列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案