設(shè)A是圓形紙片內(nèi)不同于圓心的一個點,取圓周上一點B,折疊紙片使點B與A重合,得到一條折痕,當點B取遍圓周上所有點時,得到的所有折痕均與某條曲線相切,這條曲線是一個( 。
A、圓B、橢圓C、雙曲線D、拋物線
考點:軌跡方程
專題:操作型,圓錐曲線的定義、性質(zhì)與方程
分析:由線段AB的垂直平分線,可得|AP|=|PB|,而|OP|+|PB|=|OB|=R,可得|PO|+|PA|=R定值>|OA|,利用橢圓的定義可知:點P的軌跡是橢圓.
解答: 解:如圖所示
由題意可知:折痕l為線段AB的垂直平分線AB,∴|AP|=|PB|,
而|OP|+|PB|=|OB|=R,∴|PO|+|PA|=R定值>|OA|.
∴當點B運動時點P的軌跡是以點O,A為焦點,長軸長為R的橢圓,所有折痕均與橢圓相切.
故選:B.
點評:熟練掌握橢圓的定義、線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項之和Sn=n2+3n+1,則a1+a3+a5等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α、β、γ均為銳角,且sinα+sinγ=sinβ,cosα-cosγ=cosβ,則α-β=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)如果λ
a
b
(λ≠0),那么
a
=
b
;
(2)若
a0
為單位向量,
a
a0
平行,則
a
=|
a
|•
a0
;
(3)設(shè)
a
1
e1
2
e2
(λ1,λ2∈R),則當
e1
e2
共線時,
a
e1
也共線,
其中真命題的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,則cos2
α
2
+
π
4
)=( 。
A、
1
6
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的斜率與直線3x-2y=6的斜率相等,且直線l在x軸上的截距比在y軸上的截距大1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A(x1,y1)、B(x2,y2)、C(x3,y3)是拋物線x2=2py(p>0﹚上的三點,F(xiàn)是其焦點,且x12、x22、x32成等差數(shù)列.求證:|AF|、|BF|、|CF|也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(
π
2
,π),tanα-cotα=
3
2

(1)求tanα,sinα的值;
(2)求tan
α
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,若S17為一確定常數(shù),則當n為何值時,可以使4a2-3a9+an也為確定常數(shù).

查看答案和解析>>

同步練習冊答案