如圖,在棱長為a的正方體ABCD-A1B1C1D1
(1)畫出二面角A1-BD-A的平面角;
(2)求出二面角A1-BD-A的正切值.
考點(diǎn):二面角的平面角及求法
專題:空間位置關(guān)系與距離
分析:(1)取BD中點(diǎn)O,由已知得∠A1OA是二面角A1-BD-A的平面角.
(2)由AO=
1
2
AC=
1
2
2
a
,AA1=a,能求出二面角A1-BD-A的正切值.
解答: 解:(1)取BD中點(diǎn)O,
∵在棱長為a的正方體ABCD-A1B1C1D1中,
A1D=A1B=
2
a
,AB=AD=a,
∴A1O⊥BD,AO⊥BD,
∴∠A1OA是二面角A1-BD-A的平面角.
(2)∵AO=
1
2
AC=
1
2
2
a
,
AA1=a,
∴tan∠A1OA=
AA1
AO
=
a
1
2
2
a
=
2
,
∴二面角A1-BD-A的正切值為
2
點(diǎn)評(píng):本題考查二面角的平面角的作法,考查二面角的正切值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2-3x+8<0”的否定是( 。
A、?x∈R,x2-3x+8>0
B、?x∈R,x2-3x+8>0
C、?x∈R,x2-3x+8≥0
D、?x∈R,x2-3x+8≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin(x+φ),0<φ<
π
2
,且f(0)=1.
(1)求f(x)的解析式;
(2)已知f(α)=
4
5
,
π
2
<α<π,求sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-1+
a
x
(a∈R).
(1)若函數(shù)f(x)在x=1處有極值,且函數(shù)g(x)=f(x)+b在(0,+∞)上有零點(diǎn),求b的最大值;
(2)若f(x)在(1,2)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2-a2x+2
(1)若a≠0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式2xlnx≤f′(x)+a2+1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
(2)若x=-
1
3
是函數(shù)f(x)的極值點(diǎn),求函數(shù)f(x)在[1,a]上的最大值.
(3)設(shè)函數(shù)g(x)=f(x)-bx,在(2)的條件下,若函數(shù)g(x)恰有3個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)
x2
,其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足Sn2=an(Sn-
1
2

(1)證明:(
1
Sn
)是等差數(shù)列
(2)設(shè)bn=
Sn
2n+1
)n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程:x2+y2=2
(1)若點(diǎn)P(x,y)在圓上,求x+y的取值范圍;
(2)過點(diǎn)P(2,4)作圓的切線PA、PB,A、B為切點(diǎn).
①求PA,PB的方程;
②求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案