15.已知0<α<π,cosα=-$\frac{3}{5}$,則sin(α+$\frac{π}{6}$)=( 。
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{4\sqrt{3}+3}}{10}$D.$\frac{{4\sqrt{3}-3}}{10}$

分析 求出角的正弦函數(shù)值,然后利用兩角和的正弦函數(shù)化簡求解即可.

解答 解:0<α<π,cosα=-$\frac{3}{5}$,sinα=$\frac{4}{5}$,
則sin(α+$\frac{π}{6}$)=sinαcos$\frac{π}{6}$+cosαsin$\frac{π}{6}$=$\frac{4}{5}×\frac{\sqrt{3}}{2}$$-\frac{3}{5}×\frac{1}{2}$=$\frac{4\sqrt{3}-3}{10}$.
故選:D.

點(diǎn)評 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(理)已知等差數(shù)列{an}的首項為p,公差為d(d>0),對于不同的自然數(shù)n(n∈N*),直線x=an與x軸和指數(shù)函數(shù)f(x)=($\frac{1}{2}$)x的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證:數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)f(x)是一個函數(shù).使得對所有整數(shù)x和y.都有f(x+y)=f(x)+f(y)+6xy+1和f(x)=f(-x).則f(4)等于( 。
A.26B.47C.52D.53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對于下列表格所示的五個散點(diǎn),若求得的線性回歸直線方程為$\widehat{y}$=0.8x-155,
x196197200203204
y1367m
則實(shí)數(shù)m的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{16}+\frac{y^2}{4}$=1過點(diǎn)P(2,1)作弦且弦被P平分,則此弦所在的直線方程為( 。
A.2x-y-3=0B.2x-y-1=0C.x+2y-1=0D.x+2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=sinx+$\sqrt{3}$cosx (x∈R)
(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={-2,-1,3,4},B={-1,0,3},則A∪B等于( 。
A.{-1,3}B.{-2,-1,0,3,4}C.{-2,-1,0,4}D.{-2,-1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=ax3+5在R上是增函數(shù),則實(shí)數(shù)a的取值范圍為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2x+1
(1)求f(x)與g(x)的解析式;
(2)求證:f(x)在區(qū)間[0,+∞)上單調(diào)遞增;并求f(x)在區(qū)間[0,+∞)的反函數(shù);
(3)設(shè)h(x)=x2+2mx+m2-m+1(其中m為常數(shù)),若h(g(x))≥m2-m-1對于x∈[1,2]恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案