18.Sn=lnx+lnx3+lnx5+…+lnx2n-1=n2lnx.

分析 直接利用對數(shù)運算法則以及等差數(shù)列求和求解即可.

解答 解:Sn=lnx+lnx3+lnx5+…+lnx2n-1=(1+3+5+…+(2n-1))lnx=$\frac{1+2n-1}{2}•n$lnx=n2lnx.
故答案為:n2lnx.

點評 本題考查對數(shù)運算法則以及等差數(shù)列求和公式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,Q為橢圓C的左頂點,斜率為k(k≠0)的直線l與橢圓C交于A、B兩點,當∠AQB=$\frac{π}{2}$時,直線1過x軸上的定點N,則點N的坐標為N(-$\frac{2}{5}$,0)或($-\frac{6}{5},0$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=5,a2=2,且2(an+an+2)=5an+1,則數(shù)列{an}的前n項之和為11-$\frac{1}{3}$(25-n+2n).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知在△ABC中,tan$\frac{A}{2}$=$\frac{1}{2}$,tan$\frac{B}{2}$=$\frac{1}{3}$,△ABC的形狀為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.判斷下列函數(shù)的奇偶性.
(1)f(x)=cos($\frac{π}{2}$+2x)cos(π+x).
(2)f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
(3)f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=ln(2x),函數(shù)g(x)=$\frac{1}{f′(x)}$+af′(x),y=g(x)在x=1處的切線與直線y=-x-5平行.
(1)求a的值.
(2)求直線y=$\frac{3}{4}$x+$\frac{3}{2}$與曲線y=g(x)所圍成的圖形的面積.
(3)若函數(shù)F(x)=f(x)+g(x)+2b在x∈(0,+∞)有且只有兩個零點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知tanα=2,則sinαcosα+2sin2α的值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.y=x${e}^{\frac{1}{{x}^{2}}}$的鉛直漸近線是x=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖:在三棱柱ABC-A1B1C1中,四邊形A1ABB1是菱形,四邊形BCC1B1是矩形,且C1B1⊥AB.
(1)求證:CB⊥平面A1ABB1    
(2)若C1B1=3,AB=4,∠ABB1=60°,求AC1與平面BCC1B1所成角的大。

查看答案和解析>>

同步練習冊答案