分析 ①f(-x)=sin(-2x)•cos(-x)=-sin2x•cosx,因此,f(-x)=-f(x),所以f(x)為奇函數(shù);
②f(-x)=$\sqrt{1+sin(-x)}$+$\sqrt{1-sin(-x)}$=$\sqrt{1-sinx}$+$\sqrt{1+sinx}$,因此,f(-x)=f(x),所以f(x)為偶函數(shù);
③f(-x)=$\frac{{e}^{sin(-x)}+{e}^{-sin(-x)}}{{e}^{sin(-x)}-{e}^{-sin(-x)}}$=$\frac{{e}^{-sinx}+{e}^{sinx}}{{e}^{-sinx}-{e}^{sinx}}$,因此,f(-x)=-f(x),所以f(x)為奇函數(shù).
解答 解:直接根據(jù)函數(shù)奇偶性的定義,判斷如下:
①∵f(x)=(-sin2x)•(-cosx)=sin2x•cosx,
∴f(-x)=sin(-2x)•cos(-x)=-sin2x•cosx,
因此,f(-x)=-f(x),所以f(x)為奇函數(shù);
②∵f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
∴f(-x)=$\sqrt{1+sin(-x)}$+$\sqrt{1-sin(-x)}$=$\sqrt{1-sinx}$+$\sqrt{1+sinx}$,
因此,f(-x)=f(x),所以f(x)為偶函數(shù);
③∵f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$,
∴f(-x)=$\frac{{e}^{sin(-x)}+{e}^{-sin(-x)}}{{e}^{sin(-x)}-{e}^{-sin(-x)}}$=$\frac{{e}^{-sinx}+{e}^{sinx}}{{e}^{-sinx}-{e}^{sinx}}$,
因此,f(-x)=-f(x),所以f(x)為奇函數(shù).
點(diǎn)評 本題主要考查了函數(shù)奇偶性的判斷,涉及三角函數(shù)的誘導(dǎo)公式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x,g(x)=x2 | B. | f(x)=x,g(x)=$\root{3}{x^3}$ | C. | f(x)=x,g(x)=$\sqrt{x}$ | D. | f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com