6.函數(shù)y=ax3+1的圖象與直線y=x相切,則a=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{16}{27}$D.$\frac{4}{27}$

分析 設切點為(x0,y0),由于y′=3ax2,利用導數(shù)的幾何意義可得k=3ax02,又由于點(x0,y0)在曲線與直線上,可得y0=x0,y0=ax03+1,即可解出a.

解答 解:設切點為(x0,y0),
∵y′=3ax2,∴k=3ax02=1,①
又∵點(x0,y0)在曲線與直線上,
即y0=x0,y0=ax03+1,②
由①②得x0=$\frac{3}{2}$,a=$\frac{4}{27}$.
故選:D.

點評 熟練掌握導數(shù)的幾何意義、切線的方程等是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.g(x)=$\frac{6}{|x|+3}$-1定義域[m,n],且m,n為整數(shù),相應的值域是[0,1],滿足條件的整數(shù)對(m,n)共有( 。
A.4對B.5對C.6對D.7對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.等比數(shù)列{an}中,a1+a2+a3=2,a4+a5+a6=4,則a10+a11+a12=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知兩點O(0,0),A(6,0),圓C以線段OA為直徑.
(1)求圓C的方程;
(2)若直線1:x-y-1=0與圓C相交于M,N兩點,求弦MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知β∈[0,π],且滿足$\sqrt{3}sinβ+cosβ$=0,則角β的值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對任意的實數(shù)x,不等式(a2-1)x2+(a-1)x-1<0都成立,則實數(shù)a的取值范圍是( 。
A.-$\frac{3}{5}$<a<1B.-$\frac{3}{5}$<a≤1C.-$\frac{3}{5}$≤a≤1D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求下列函數(shù)的取值范圍:
(1)y=x2-4x+3(4≤x≤9);
(2)y=x2-6x+2(-1≤x≤4);
(3)y=-x2-8x+9(-6≤x≤0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,若內(nèi)角A、B、C依次成等差數(shù)列,且不等式-x2+6x-8>0的解集為{x|a<x<c},則S△ABC等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.將單位圓經(jīng)過伸縮變換:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲線C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1
(1)求實數(shù)λ,μ的值;
(2)以原點O 為極點,x 軸為極軸建立極坐標系,將曲線C 上任意一點到極點的距離ρ(ρ≥0)?表示為對應極角θ(0≤θ<2π)的函數(shù),并探求θ為何值時,ρ取得最小值?

查看答案和解析>>

同步練習冊答案