17.等比數(shù)列{an}中,a1+a2+a3=2,a4+a5+a6=4,則a10+a11+a12=16.

分析 由題意和整體思想可得q3=2,代入a10+a11+a12=(a4+a5+a6)q6,計(jì)算可得.

解答 解:∵等比數(shù)列{an}中a1+a2+a3=2,a4+a5+a6=4,
∴公比q滿足q3=$\frac{{a}_{4}+{a}_{5}+{a}_{6}}{{a}_{1}+{a}_{2}+{a}_{3}}$=2,
∴a10+a11+a12=(a4+a5+a6)q6=16
故答案為:16

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C:(x-1)2+(y-2)2=25,直線l:kx-y-5k+4=0.
(1)若直線l平分圓C,求k的值;
(2)若直線l被圓C截得的弦長(zhǎng)為6,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知下列函數(shù):
①y=x+$\frac{1}{x}$; ②y=1g$\frac{x+1}{x-1}$; ③y=lg(x+$\sqrt{{x}^{2}+1}$); ④y=sin(cosx); ⑤f(x)=$\left\{\begin{array}{l}{-{x}^{2}+sinx,x≥0}\\{{x}^{2}+sinx,x<0}\end{array}\right.$.
其中奇函數(shù)的個(gè)數(shù)共有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=a+$\frac{2}{{2}^{x}-1}$是奇函數(shù),則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.正方體ABCD-A1B1C1D1中,E是棱D1D的中點(diǎn),P,Q分別為線段B1D1,BD上的點(diǎn),且3$\overrightarrow{{B}_{1}P}$=$\overrightarrow{P{D}_{1}}$,若PQ⊥AE,$\overrightarrow{BD}$=λ$\overrightarrow{DQ}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.B=$\frac{π}{3}$
(1)若2sinA=sinC,求角A的大小
(2)若sinAsinC=$\frac{1}{2}$$\overrightarrow{BA}$•$\overrightarrow{BC}$=3,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.中央電視臺(tái)公開課《開講啦》需要現(xiàn)場(chǎng)觀眾,現(xiàn)邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生數(shù)如下表所示:
大學(xué)
人數(shù)812812
從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生安排在第一排發(fā)言席就座.
(1)從抽取的10名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意2名均不屬于同一大學(xué)的概率;
(2)從抽取的10名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)其中來(lái)自乙大學(xué)的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)y=ax3+1的圖象與直線y=x相切,則a=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{16}{27}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集中A={2,4,6},B={1,9,25,49,81,100},下面的對(duì)應(yīng)關(guān)系f能構(gòu)成A到B的映射的是(  )
A.f:x→(2x-1)2B.f:x→(2x-3)C.f:x→(2x-1)D.f:x→(2x-3)2

查看答案和解析>>

同步練習(xí)冊(cè)答案