A. | $\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{5\sqrt{3}}{9}$ | D. | -$\frac{\sqrt{6}}{9}$ |
分析 由已知等式及角的范圍,利用同角三角函數(shù)基本關(guān)系式可求sin($\frac{π}{4}$-$\frac{β}{2}$),sin($\frac{π}{4}$+α)的值,利用兩角差的余弦函數(shù)公式即可計算求值得解.
解答 解:∵0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,
∴$\frac{π}{4}$-$\frac{β}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),$\frac{π}{4}$+α∈($\frac{π}{4}$,$\frac{3π}{4}$),
∴sin($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{6}}{3}$,sin($\frac{π}{4}$+α)=$\frac{2\sqrt{2}}{3}$,
∴cos(α+$\frac{β}{2}$)=cos[($\frac{π}{4}$+α)-($\frac{π}{4}$-$\frac{β}{2}$)]=cos($\frac{π}{4}$+α)cos($\frac{π}{4}$-$\frac{β}{2}$)+sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{1}{3}×$$\frac{\sqrt{3}}{3}$+$\frac{\sqrt{6}}{3}$×$\frac{2\sqrt{2}}{3}$=$\frac{5\sqrt{3}}{9}$.
故選:C.
點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 3-$\sqrt{3}$ | C. | 9 | D. | 9-6$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com