分析 由拋物線的焦點坐標和準線方程,設出P,Q的坐標,得到向量PF,F(xiàn)Q的坐標,由向量共線的坐標關系,以及拋物線的定義,即可求得.
解答 解:拋物線C:x2=4y的焦點為F(0,1),準線為l:y=-1,
設P(a,-1),Q(m,$\frac{{m}^{2}}{4}$),
則$\overrightarrow{PF}$=(-a,2),$\overrightarrow{QF}$=(-m,-$\frac{{m}^{2}}{4}$+1),
∵$\overrightarrow{PF}$=4$\overrightarrow{QF}$,
∴$\left\{\begin{array}{l}{-a=-4m}\\{2=4(-\frac{{m}^{2}}{4}+1)}\end{array}\right.$,解得m2=2,
由拋物線的定義可得
|QF|=$\sqrt{(-m)^{2}+(-\frac{{m}^{2}}{4}+1)^{2}}$=$\sqrt{2+\frac{1}{4}}$=$\frac{3}{2}$.
故選:$\frac{3}{2}$.
點評 本題考查拋物線的定義和性質(zhì),考查向量知識的運用,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
快遞業(yè)務總量 | 34 | 55 | 71 | 85 | 105 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com