6.過原點(diǎn)的直線l與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右兩支分別相交于A,B兩點(diǎn),F(xiàn)(-$\sqrt{3}$,0)是雙曲線C的左焦點(diǎn),若|FA|+|FB|=4,$\overrightarrow{FA}$$•\overrightarrow{FB}$=0.則雙曲線C的方程=$\frac{{x}^{2}}{2}-{y}^{2}=1$.

分析 設(shè)|FB|=x,則|FA|=4-x,利用勾股定理,建立方程,求出|FB|=2+$\sqrt{2}$,|FA|=2-$\sqrt{2}$,可得a,b,即可得出結(jié)論.

解答 解:設(shè)|FB|=x,則|FA|=4-x,
∵過原點(diǎn)的直線l與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右兩支分別相交于A,B兩點(diǎn),F(xiàn)(-$\sqrt{3}$,0)是雙曲線C的左焦點(diǎn),
∴|AB|=2$\sqrt{3}$,
∵$\overrightarrow{FA}$$•\overrightarrow{FB}$=0,
∴x2+(4-x)2=12,
∴x2-4x+2=0,
∴x=2±$\sqrt{2}$,
∴|FB|=2+$\sqrt{2}$,|FA|=2-$\sqrt{2}$,
∴2a=|FB|-|FA|=2$\sqrt{2}$,
∴a=$\sqrt{2}$,
∴b=1,
∴雙曲線C的方程為$\frac{{x}^{2}}{2}-{y}^{2}=1$.
故答案為:$\frac{{x}^{2}}{2}-{y}^{2}=1$.

點(diǎn)評(píng) 本題考查雙曲線方程與性質(zhì),考查學(xué)生的計(jì)算能力,確定幾何量是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.岳陽市為了改善整個(gè)城市的交通狀況,對(duì)過洞庭大橋的車輛通行能力進(jìn)行調(diào)查.統(tǒng)計(jì)數(shù)據(jù)顯示:在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過30輛/千米時(shí),車流速度為85千米/小時(shí),研究表明:當(dāng)30≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的單調(diào)函數(shù)f(x)滿足:對(duì)任意的x,都有f(f(x)-2x)=6,則不等式f(x+2)≥3f(-x)的解集為(  )
A.[log2$\frac{3}{2}$,+∞)B.(-∞,log2$\frac{3}{2}$]C.[log25,+∞)D.(-∞,log25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1且垂直于x軸的直線交橢圓C于A、B兩點(diǎn),|AB|=$\frac{4\sqrt{3}}{3}$,△ABF2為正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)記橢圓C的左、右頂點(diǎn)分別為D、E,過點(diǎn)D作直線l依次交橢圓C、直線x=$\sqrt{3}$于M、N兩點(diǎn),若點(diǎn)M位于第一象限,求$\frac{|ME|}{|NE|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系中,設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),則$\overrightarrow{a}$.($\overrightarrow{a}$-$\overrightarrow$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=c(c∈R),有兩個(gè)不相等的實(shí)數(shù)根x1、x2,求證:$f'(\frac{{{x_1}+{x_2}}}{2})>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求兩平行線x+y-1=0與2x+2y=0間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過點(diǎn)(5,3)且與直線2x-3y-7=0平行的直線方程是( 。
A.3x+2y-21=0B.2x-3y-1=0C.3x-2y-9=0D.2x-3y+9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,實(shí)數(shù)k為大于零的常數(shù),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函數(shù)f(x)的最大值為$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,若$\frac{π}{2}$<A<π,f(A)=0,且b=2$\sqrt{2}$,a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案