14.函數(shù)f(x)=x3+ax2+3x-9已知f(x)在x=-3時(shí)取得極值,則a=( 。
A.2B.3C.4D.5

分析 先對函數(shù)進(jìn)行求導(dǎo),根據(jù)函數(shù)f(x)在x=-3時(shí)取得極值,可以得到f′(-3)=0,代入求a值.

解答 解:對函數(shù)求導(dǎo)可得,f′(x)=3x2+2ax+3
∵f(x)在x=-3時(shí)取得極值 
∴f′(-3)=0⇒a=5,驗(yàn)證知,符合題意
故選:D.

點(diǎn)評 本題主要考查函數(shù)在某點(diǎn)取得極值的性質(zhì).屬基礎(chǔ)題.比較容易,要求考生只要熟練掌握基本概念,即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.△ABC滿足$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,設(shè)M是△ABC內(nèi)的一點(diǎn)(不含邊界),定義f(M)=(x,y,z),其中x,y,z分別表示△MBC,△MCA,△MAB的面積,若f(M)=(x,y,$\frac{1}{3}$),則$\frac{1}{x}$+$\frac{4}{y}$的最小值為( 。
A.4B.6C.9D.$\frac{27}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,拋物線C:y2=2px(p>0)的焦點(diǎn)為F,M是拋物線C上的點(diǎn),若△OFM的外接圓與拋物線C的準(zhǔn)線相切,且該圓面積9π,則p=(  )
A.2B.4C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U=R,函數(shù)f(x)=$\sqrt{{2}^{x}-{5}^{x}}$的定義域?yàn)镸,則∁UM=( 。
A.(-∞,0]B.(0,+∞)C.(-∞,0)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列不等式中成立的是(  )
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b,c>d,則a-c>b-dD.若a<b<0,則$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+$\frac{5}{2}$x2+ax+b,g(x)=x3+$\frac{7}{2}$x2+lnx+b,(a,b為常數(shù))
(1)若g(x)在x=1處切線過點(diǎn)(0,-5),求b的值
(2)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+ln2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=lnx,f′(x)是f(x)的導(dǎo)數(shù),f′(x)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=ex(sinx-2)在區(qū)間[0,2π]上的最大值是(  )
A.-2B.-2eC.-2eπD.-${e}^{\frac{π}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+$\frac{x}$+c(a>0),g(x)=lnx,其中函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(Ⅰ)若a=1,求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)≥g(x)在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln(n+1)+\frac{n}{2(n+1)}$(n≥1).

查看答案和解析>>

同步練習(xí)冊答案