A. | 2 | B. | $\sqrt{2}$ | C. | 10 | D. | $\sqrt{10}$ |
分析 由已知求得sinB,并說明角B為鈍角,則cosB可求,然后結合余弦定理求得AC.
解答 解:在鈍角△ABC中,由AB=2,$BC=\sqrt{2}$,且S△ABC=1,
得$\frac{1}{2}AB•BCsinB=1$,即$sinB=\frac{2}{2×\sqrt{2}}=\frac{\sqrt{2}}{2}$,
∴AC2=AB2+BC2-2AB•BC•cosB,
若C為鈍角,則cosB=$\frac{\sqrt{2}}{2}$,
則$A{C}^{2}={2}^{2}+(\sqrt{2})^{2}-2×2×\sqrt{2}×\frac{\sqrt{2}}{2}=2$,AC=$\sqrt{2}$,
∴△ABC為等腰直角三角形,與已知矛盾;
∴B為鈍角,則cosB=-$\frac{\sqrt{2}}{2}$,
∴$A{C}^{2}={2}^{2}+(\sqrt{2})^{2}-2×2×\sqrt{2}×(-\frac{\sqrt{2}}{2})=10$,
則AC=$\sqrt{10}$.
故選:D.
點評 本題考查了解三角形,考查了正弦定理和余弦定理的應用,關鍵是分析出角B為鈍角,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{85}}}{5}$ | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{16}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com