分析 (1)求出原函數(shù)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,再由導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào)得答案;
(2)由(1)可得當(dāng)0<x≤1時(shí),函數(shù)f(x)為增函數(shù),求出f(x)在0<x≤1時(shí)的最大值,把不等式f(x)≤m(m-2)恒成立轉(zhuǎn)化為關(guān)于m的不等式得答案.
解答 解:(1)由f(x)=$\frac{9x}{{x}^{2}+x+1}$,得f′(x)=$\frac{9({x}^{2}+x+1)-9x(2x+1)}{({x}^{2}+x+1)^{2}}=\frac{9(1-x)}{({x}^{2}+x+1)^{2}}$,
∴當(dāng)x∈(0,1)時(shí),f′(x)>0;當(dāng)x∈(1,+∞)時(shí),f′(x)<0.
∴f(x)的單調(diào)增區(qū)間為(0,1);單調(diào)減區(qū)間為(1,+∞).
(2)由(1)知,當(dāng)0<x≤1時(shí),函數(shù)f(x)為增函數(shù),
∴當(dāng)0<x≤1時(shí),$f(x)_{max}=f(1)=\frac{9}{3}=3$,
∴要使不等式f(x)≤m(m-2)恒成立,則m(m-2)≥3,即m2-2m-3≥0,
解得:m≤-1或m≥3.
∴實(shí)數(shù)m的取值范圍是(-∞,-1]∪[3,+∞).
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,訓(xùn)練了恒成立問題的解法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com