A. | (0,$\frac{2π}{3}$) | B. | (0,π) | C. | ($\frac{π}{3}$,$\frac{2π}{3}$) | D. | ($\frac{2π}{3}$π) |
分析 根據(jù)(2a-c)cosB=Bcosc,利用正弦定理可得cosB=$\frac{1}{2}$,可求B=$\frac{π}{3}$,由三角形內(nèi)角和定理即可得解A的值.
解答 解:∵(2a-c)cosB=Bcosc,
∴(2sinA-sinC)cosB=sinBcosC,可得:2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA. …(3分)
∴2cosB=1,即:cosB=$\frac{1}{2}$,
∴由B為三角形內(nèi)角,B∈(0,π),可得:B=$\frac{π}{3}$.
∴可得:0<A<$\frac{2π}{3}$,
故選:A.
點評 本題主要考查兩角和差的正弦公式、正弦定理及三角形內(nèi)角和定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3]∪[5,+∞) | B. | (-∞,-3)∪(5,+∞) | C. | [-3,5] | D. | (-3,5) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com