8.已知函數(shù)y=3x,x∈[-1,2],則其值域是[-3,6].

分析 根據(jù)x的范圍可以求出3x的范圍,即求出y的范圍,從而得出該函數(shù)的值域.

解答 解:x∈[-1,2];
∴3x∈[-3,6];
即y∈[-3,6];
∴該函數(shù)的值域?yàn)閇-3,6].
故答案為:[-3,6].

點(diǎn)評(píng) 考查函數(shù)值域的概念,根據(jù)不等式的性質(zhì)求函數(shù)值域的方法,以及一次函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|0≤x≤4},B={x|m+1≤x≤1-m},且CRA∩B=B,求實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.點(diǎn)(2a-1,a)在直線x+2y-7=0上,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{-x+a,x>1}\end{array}\right.$ 在R上單調(diào)遞減,則實(shí)數(shù)a的取值范圍0<a<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過圓形管道時(shí),其流量速率v(單位:cm2/s)與管道半徑r(單位:cm)的四次方成正比.
(1)寫出氣流流量速v關(guān)于管道半徑r的函數(shù)解析式;
(2)若氣體在半徑為3cm的管道中,流量速率為400cm2/s,求該氣體通過半徑為r的管道時(shí),其流量速率v的表達(dá)式;
(3)已知(2)中的氣體通過的管道半徑為5cm,計(jì)算該氣體的流量速率(精確到1cm3/s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若x∈[1,+∞)時(shí),函數(shù)f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.函數(shù)f(x)=m•ax+$\frac{4}{m•{a}^{x}}$.(m>0,a>0,且a≠1)為偶函數(shù).
(1)求m的值;
(2)用定義證明f(x)在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a1+a2+a3=64($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$),a${\;}_{{1}_{\;}}$+a2=2($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(an+$\frac{1}{{a}_{n}}$)2,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)向量$\vec a=(1,\;x)$,$\vec b=(x,4)$,則$x=\int_0^{\sqrt{2}}{2tdt}$是$\vec a$∥$\vec b$的(  )條件.
A.充分不必要B.必要不充分
C.充要D.即不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案