18.已知集合A={x|0≤x≤4},B={x|m+1≤x≤1-m},且CRA∩B=B,求實數(shù)m的取值范圍?

分析 由已知求出CRA,結合CRA∩B=B,分B=∅和B≠∅分類求解實數(shù)m的取值范圍.

解答 解析:∵A={x|0≤x≤4},∴CRA={x|x<0,x>4},
∵CRA∩B=B,∴B⊆CRA,
又∵B={x|m+1≤x≤1-m},
∴當B=∅時,∴m+1>1-m,即m>0;
當B≠∅時,則$\left\{\begin{array}{l}{m+1≤1-m}\\{1-m<0}\end{array}\right.$,或$\left\{\begin{array}{l}{m+1≤1-m}\\{m+1>4}\end{array}\right.$此時m無解.
綜上,m>0.

點評 本題考查交、并、補集的混合運算,考查數(shù)學轉化思想方法,關鍵是注意兩集合端點值間的關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.設x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}}\right.$,則$\frac{y+1}{x-4}$的取值范圍是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設集合M={-1,0,1},N={x|x2-2x=0},則M∩N=( 。
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=\sqrt{x+3}+\sqrt{4-x}$的定義域為集合A,g(x)=lg(5-x)+lg(x+1)的定義域為集合B.設全集U=R,求A∩B及(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知兩條直線(m+2)x+3my+1=0與(m-2)x+(m+2)y-3=0相互垂直,則m=-2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若$y={log_{3{a^2}-1}}x$在(0,+∞)內(nèi)為增函數(shù),且y=a-x也為增函數(shù),則a的取值范圍是(  )
A.$(\frac{{\sqrt{3}}}{3},\;\;1)$B.$(0,\;\;\frac{1}{3})$C.$(\frac{{\sqrt{3}}}{3},\;\;\frac{{\sqrt{6}}}{3})$D.$(\frac{{\sqrt{6}}}{3},1\;\;)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點P到左焦點距離為8,則P到右焦點距離為2或14;命題q:橢圓離心率越大,橢圓越趨近于圓.則下列命題中為真命題的是( 。
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.比較下列各組數(shù)大。
(1)1.52.5和1.53.2
(2)0.6-1.2和0.6-1.5;
(3)1.50.3和0.81.2;
(4)0.30.4和0.20.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)y=3x,x∈[-1,2],則其值域是[-3,6].

查看答案和解析>>

同步練習冊答案