【題目】市面上有某品牌型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過5000小時,經(jīng)銷商對型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計,得到如下頻率分布直方圖:
某商家因原店面需要重新裝修,需租賃一家新店面進(jìn)行周轉(zhuǎn),合約期一年.新店面需安裝該品牌節(jié)能燈5支(同種型號)即可正常營業(yè).經(jīng)了解,型20瓦和型55瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝.已知型和型節(jié)能燈每支的價格分別為120元、25元,當(dāng)?shù)厣虡I(yè)電價為0.75元/千瓦時,假定該店面正常營業(yè)一年的照明時間為3600小時,若正常營業(yè)期間燈壞了立即購買同型燈更換.(用頻率估計概率)
(1)若該商家新店面全部安裝了型節(jié)能燈,求一年內(nèi)恰好更換了2支燈的概率;
(2)若只考慮燈的成本和消耗電費,你認(rèn)為該商家應(yīng)選擇哪種型號的節(jié)能燈,請說明理由.
【答案】(1);(2)應(yīng)選擇A型節(jié)能燈.
【解析】
(1)由頻率分布直方圖可知用頻率估計概率,得m型節(jié)能燈使用壽命超過3600小時的概率為,從而一年內(nèi)一支B型節(jié)能燈在使用期間需更換的概率為,由此能求出一年內(nèi)5支恰好更換了2支燈的概率.
(2)共需要安裝5支同種燈管,選擇A型節(jié)能燈,一年共需花費5×120+3600×5×20×0.75×10﹣3=870元;選擇B型節(jié)能燈,由于B型節(jié)能燈一年內(nèi)需更換服從二項分布,一年共需花費元,由此能求出該商家應(yīng)選擇A型節(jié)能燈.
(1)由頻率分布直方圖可知,B型節(jié)能燈使用壽命超過3600小時的頻率為0.2,
用頻率估計概率,得B型節(jié)能燈使用壽命超過3600小時的概率為.
所以一年內(nèi)一支B型節(jié)能燈在使用期間需更換的概率為,.
所以一年內(nèi)支恰好更換了支燈的概率為..
(2)共需要安裝支同種燈管,
若選擇A型節(jié)能燈,一年共需花費元;
若選擇B型節(jié)能燈,由于B型節(jié)能燈一年內(nèi)需更換服從二項分布,
故一年需更換燈的支數(shù)的期望為支,
故一年共需花費元.
因為,所以該商家應(yīng)選擇A型節(jié)能燈.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的一條弦的中點作平行于拋物線對稱軸的平行線(或與對稱軸重合),交拋物線于一點,稱以該點及弦的端點為頂點的三角形為這條弦的阿基米德三角形(簡稱阿氏三角形).
現(xiàn)有拋物線:,直線:(其中,,是常數(shù),且),直線交拋物線于,兩點,設(shè)弦的阿氏三角形是.
(1)指出拋物線的焦點坐標(biāo)和準(zhǔn)線方程;
(2)求的面積(用,,表示);
(3)稱的阿氏為一階的;、的阿氏、為二階的;、、、的阿氏三角形為三階的;……,由此進(jìn)行下去,記所有的階阿氏三角形的面積之和為,探索與之間的關(guān)系,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點關(guān)于原點的對稱點為,為其右焦點,若,設(shè),且,則該橢圓的離心率的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求最小的正整數(shù),使得當(dāng)正整數(shù)點時,在前個正整數(shù)構(gòu)成的集合中,對任意總存在另一個數(shù)且,滿足為平方數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù),為常數(shù),并且).
(1)判斷函數(shù)在區(qū)間內(nèi)是否存在極值點,并說明理由;
(2)若當(dāng)時,恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
“直線l與平面平行”是“直線l在平面外”的充分不必要條件;
若p:,,則:,;
命題“設(shè)a,,若,則或”為真命題;
“”是“函數(shù)在上單調(diào)遞增”的充要條件.
其中所有正確結(jié)論的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設(shè)直線: 上兩點, 關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率等于.
(1)求橢圓的方程;
(2)過橢圓的右焦點作直線交橢圓于、兩點,交軸于點,若,,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com