如圖所示,已知矩形ABCD所在平面,M、N分別是AB、PC的中點。

(1)求證:平面PAD;
(2)求證:

(1)證明略
(2)證明略
(1)取PD的中點E,連接AE、EN,則由于EN與AM平行且相等,
故AMNE為平行四邊形,所以MN//AE

因為平面PAD,平面PAD,所以MN//平面PAD
(2)因為矩形ABCD所在平面,所以
,所以平面PAD
所以,即。又CD//AB,
所以
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正四棱錐底面正方形的邊長為4cm,高PO與斜高PE的夾角為,如圖,求正四棱錐的表面積與體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


設(shè)地球是半徑為R的球,地球上A、B兩地都在北緯45°的緯線上,A在東經(jīng)20°、B在東經(jīng)110°的經(jīng)線上,則A、B兩地的球面距離是 (     )
A.      B.      C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面, .底面為梯形,
,.,點在棱上,且
(1)求證:平面
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正△的邊長為4,邊上的高,分別是邊的中點,現(xiàn)將△沿翻折成直二面角
(1)試判斷直線與平面的位置關(guān)系,并說明理由;
(2)求二面角的余弦值;
(3)在線段上是否存在一點,使?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在棱長為1的正方體ABCD-A1B1C1D1中.

(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B-ACB1體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,動點P在正方體ABCD—A1B1C1D1的對角線BD1上,過點P作垂直于平面BB1D1D的直線,與正方體表面交于M、N,設(shè)BP=x,MN=y,則函數(shù)的圖象大致是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)
如圖,在六面體中,四邊形ABCD是邊長為2的正方形,四邊形是邊長為1的正方形,平面,平面ABCD,DD1=2。

(1)求證:與AC共面,與BD共面.   
(2)求證:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12)如圖,四棱錐的底面為正方形,
平面,,,分別為,
的中點.   (1)求證平面.(2)求異面直線所成角的正切值.

查看答案和解析>>

同步練習冊答案