分析 由兩角差的正弦公式化簡$sinA-cosA=\frac{{\sqrt{2}}}{2}$,由A的范圍和特殊角的三角函數(shù)值求出角A的度數(shù);利用兩角和的正弦公式求出sianA,代入三角形的面積公式求出△ABC的面積.
解答 解:由題意得,$sinA-cosA=\frac{{\sqrt{2}}}{2}$,
∴$\sqrt{2}sin(A-\frac{π}{4})=\frac{\sqrt{2}}{2}$,則$sin(A-\frac{π}{4})=\frac{1}{2}$,
∵0<A<π,∴$A-\frac{π}{4}=\frac{π}{6}$,則A=$\frac{5π}{12}$,
∴sin$\frac{5π}{12}$=sin($\frac{π}{4}+\frac{π}{6}$)=$\frac{\sqrt{2}}{2}(\frac{1}{2}+\frac{\sqrt{3}}{2})$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∵AC=2,AB=4,
∴△ABC的面積S=$\frac{1}{2}•AC•ABsinA$=$\frac{1}{2}×2×4×\frac{\sqrt{6}+\sqrt{2}}{4}$
=$\sqrt{6}+\sqrt{2}$,
綜上,角A的度數(shù)是$\frac{5π}{12}$;△ABC的面積是$\sqrt{6}+\sqrt{2}$.
點評 本題考查兩角和與差的正弦公式,三角形的面積公式,注意內(nèi)角的范圍,考查化簡、變形能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{6}$cm3 | B. | $\frac{4}{3}$cm3 | C. | $\frac{3}{2}$cm3 | D. | 2cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{3π}{4}$] | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,$\frac{3π}{4}$] | D. | [$\frac{π}{4}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①簡單隨機(jī)抽樣,②系統(tǒng)抽樣,③分層抽樣 | |
B. | ①分層抽樣,②系統(tǒng)抽樣,③簡單隨機(jī)抽樣 | |
C. | ①系統(tǒng)抽樣,②簡單隨機(jī)抽樣,③分層抽樣 | |
D. | ①簡單隨機(jī)抽樣,②分層抽樣,③系統(tǒng)抽樣 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com