13.在平面直角坐標(biāo)系xoy中,已知直線l:ax+y+3=0,點(diǎn)A(0,2),若直線l上存在點(diǎn)M,滿足|MA|2+|MO|2=10,則實(shí)數(shù)a的取值范圍是{a|$a≤-\sqrt{3}$或$a≥\sqrt{3}$}.

分析 設(shè)M(x,-ax-3),由已知條件利用兩點(diǎn)間距離公式得x2+(-ax-5)2+x2+(-ax-3)2=10,由此利用根的判別式能求出實(shí)數(shù)a的取值范圍.

解答 解:設(shè)M(x,-ax-3),
∵直線l:ax+y+3=0,點(diǎn)A(0,2),直線l上存在點(diǎn)M,滿足|MA|2+|MO|2=10,
∴x2+(-ax-5)2+x2+(-ax-3)2=10,
整理,得(a2+1)x2+8ax+12=0,
∵直線l上存在點(diǎn)M,滿足|MA|2+|MO|2=10,
∴(a2+1)x2+8ax+12=0有解,
∴△=(8a)2-4×12×(a2+1)>0,
解得a$≤-\sqrt{3}$,或a$≥\sqrt{3}$.
故答案為:{a|$a≤-\sqrt{3}$或$a≥\sqrt{3}$}.

點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,注意兩點(diǎn)間距離公式和一元二次方程式根的判別式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓與直線x+y-1=0交于A、B兩點(diǎn),M為AB中點(diǎn),OM的斜率為0.25,橢圓的短軸長為2,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若集合M={y|y=sinx},N={x|x2-4≤0},則M∩N=[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b=( 。
A.-2或12B.2或-12C.-2或-12D.2或12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=ax3+bx2+(c-3a-2b)x+d(a>0)的圖象如圖.
(Ⅰ)求c,d的值;
(Ⅱ)若函數(shù)f(x)在x=2處的切線方程為3x+y-11=0,求函數(shù)f(x)的解析式;
(Ⅲ)若x0=5,方程f(x)=8a有三個不同的根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0時,有f(x1)>f(x2),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若實(shí)數(shù)a滿足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)設(shè)函數(shù)f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),對于一切正整數(shù)n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)設(shè)函數(shù)φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函數(shù)g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),試判斷g(1.2),g(2.5),g(t)的大小關(guān)系.(請按由大到小的順序排)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.小明一家三口都會下棋,在假期里的每一天中,父母都交替與小明下棋,已知小明勝父親的概率是$\frac{1}{2}$,勝母親的概率是$\frac{2}{3}$,且各盤棋之間是相互獨(dú)立的.
(1)如果共下7盤棋,并且小明與父親先下,求小明恰勝一盤的概率;
(2)如果共下3盤棋,小明與父親先下,且規(guī)定每勝一盤得1分,每負(fù)一盤減1分,求小明最終得分ξ的分布列;
(3)某天父母與小明約定下三盤棋,只要他在三盤中能至少連勝兩盤,就給他買新的鋼筆,那么小明為了獲勝希望更大,他應(yīng)該先與父親下,還是先與母親下?請用計(jì)算說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,三棱錐P-ABC中,△PAB是正三角形,E是AB的中點(diǎn),AB⊥BC,平面PAB⊥平面ABC.若AB=2,BC=$\sqrt{2}$,則點(diǎn)A到平面PEC的距離是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案