(x
x
+
1
x4
11的展開(kāi)式中,常數(shù)項(xiàng)是( 。
A、第3項(xiàng)B、第4項(xiàng)
C、第7項(xiàng)D、第8項(xiàng)
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:Tr+1=
C
r
11
(x
x
)11-r•(
1
x4
)
r
=
C
r
11
x
33-11r
2
,令
33-11r
2
=0

求得r=3,所以展開(kāi)式中的常數(shù)項(xiàng)為第四項(xiàng),
故選:B.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,F(xiàn)1、F2是雙曲線
x2
a2
-
y2
24
=1(a>0)的左、右焦點(diǎn),過(guò)F1的直線l與雙曲線交于點(diǎn)A、B,若△ABF2為等邊三角形,則△BF1F2的面積為(  )
A、8
B、8
2
C、8
3
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)與y2=20x的焦點(diǎn)重合,且雙曲線的離心率為
5
,則雙曲線的方程為( 。
A、
x2
20
-
y2
80
=1
B、
x2
10
-
y2
40
=1
C、
x2
5
-
y2
20
=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一只青蛙在圓周上標(biāo)有數(shù)字的五個(gè)點(diǎn)上跳,若它停在奇數(shù)點(diǎn)上,則下一次沿順時(shí)針?lè)较蛱鴥蓚(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則下一次沿逆時(shí)針?lè)较蛱粋(gè)點(diǎn),若青蛙從5這點(diǎn)開(kāi)始跳,則經(jīng)過(guò)2012次跳后,它停在的點(diǎn)所對(duì)應(yīng)的數(shù)為( 。
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
sin(
π
2
+α)cos(3π-α)tan(π+α)
cos(
π
2
-α)cos(-α-π)
的結(jié)果是( 。
A、1B、-1
C、sinαD、-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α,β∈R,且α≠kπ+
π
2
(k∈Z),β≠kπ+
π
2
(k∈Z),則“α+β=
3
”是“(
3
tanα-1)(
3
tanβ-1)=4”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(x,1),
b
=(4,x),則“
a
b
”是“x=2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2和-2是函數(shù)f(x)=
1
3
x3+ax2+bx+4的兩個(gè)極值點(diǎn),a,b∈R.
(1)求a,b的值,
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,a2=6,a5=18;數(shù)列{bn}的前n項(xiàng)和是Tn,且Tn+
1
2
bn=1.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)求證:數(shù)列{bn}是等比數(shù)列;
(3)記cn=
an+2
4
•bn,求{cn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案