某次的一次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(Ⅰ)求參加測試的總?cè)藬?shù)及分?jǐn)?shù)在[80,90)之間的人數(shù);
(Ⅱ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,恰有一份分?jǐn)?shù)在[90,100)之間的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)條件所給的莖葉圖看出分?jǐn)?shù)在[50,60)之間的頻數(shù),由頻率分布直方圖看出分?jǐn)?shù)在[50,60)之間的頻率和[90,100)之間的頻率一樣,繼而得到參加測試的總?cè)藬?shù)及分?jǐn)?shù)在[80,90)之間的人數(shù);
(Ⅱ)由題意知本題是一個(gè)古典概型,試驗(yàn)包含的所有事件可以通過列舉得到結(jié)果數(shù),看出滿足條件的事件數(shù),根據(jù)古典概型公式得到結(jié)果.
解答: 解:(Ⅰ)成績?cè)赱50,60)內(nèi)的頻數(shù)為2,由頻率分布直方圖可以看出,成績?cè)赱90,100]內(nèi)同樣有2人. 
2
n
=10×0.008,解得n=25.成績?cè)赱80,90)之間的人數(shù)為25-(2+7+10+2)=4人
∴參加測試人數(shù)n=25,分?jǐn)?shù)在[80,90)的人數(shù)為4人
(Ⅱ)設(shè)“在[80,100]內(nèi)的學(xué)生中任選兩人,恰有一人分?jǐn)?shù)在[90,100]內(nèi)”為事件M,
將[80,90)內(nèi)的4人編號(hào)為a,b,c,d;[90,100]內(nèi)的2人編號(hào)為A,B
在[80,100]內(nèi)的任取兩人的基本事件為:ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15個(gè).
其中,恰有一人成績?cè)赱90,100]內(nèi)的基本事件有aA,aB,bA,bB,cA,cB,dA,dB共8個(gè).
∴所求的概率得P(M)=
8
15
點(diǎn)評(píng):本題主要考查莖葉圖、頻率分布直方圖,樣樣本的頻率分步估計(jì)總體的分步,屬于基礎(chǔ)題..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a∈R,集合A={x|(x-1)•(x-a)≥0},B={x|x≥a-1},若A∪B=R,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x
+alnx,x∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若對(duì)任意的x∈[1,e],都有
2
e
≤f(x)≤2e恒成立,求實(shí)數(shù)a的取值范圍.(注:e為自然對(duì)數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體P-ABC中,PA,PB,PC兩兩垂直,設(shè)PA=PB=PC=a,則點(diǎn)P到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=60°,則C的離心率為(  )
A、
3
6
B、
3
-1
C、
3
2
D、2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)B在平面α內(nèi),A、C在α的同側(cè),AB,BC與α所成的角分別是30°和45°,若AB=3,BC=4
2
,AC=5,則AC與α所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
12
+
y2
9
=1上的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上,若線段PF1的中點(diǎn)Q恰好在y軸上,則
|PF1|
|PF2|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
3
≤a≤1,若函數(shù)f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a).
(1)求g(a)的函數(shù)表達(dá)式;
(2)判斷函數(shù)g(a)在區(qū)間[
1
3
,1]上的單調(diào)性,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)•f(-x)=1,f(x)>0恒成立,則函數(shù)g(x)=
f(x)-1
f(x)+1
的奇偶性(  )
A、奇函數(shù)B、偶函數(shù)
C、既奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案