3.如圖給出的是計算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{2011}$的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤2011B.i>2011C.i≤1005D.i>1005

分析 此題考查的是算法初步,即用程序框圖求一個數(shù)列前n項和,由題可知此數(shù)列為奇數(shù)的倒數(shù)數(shù)列,可以判斷出其最后一項為第幾項,根據(jù)算法框圖可知當(dāng)項數(shù)等于最后一項是算法終止.

解答 解:題中所給算式可看作數(shù)列{ai}的前i項和,其中${a}_{i}=\frac{1}{2i-1},i∈{N}^{*}$,
其最后一項是$\frac{1}{2011}$,即$\frac{1}{2011}=\frac{1}{2i-1}$,求得i=1006,
原題算式表示數(shù)列的前1006項和,有程序框圖判斷框定義可知i之的分界點是1005,當(dāng)i>1005時滿足算式要求,算法終止.
故選D

點評 此題聯(lián)系了一部分?jǐn)?shù)列的內(nèi)容用以考查對算法程序判斷條件的選擇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c(a<c),且$\frac{acosB+bcosA}{c}$=2cosC.
(1)若sinA=$\frac{\sqrt{10}}{10}$,求cosB的值;
(2)若S△ABC=2$\sqrt{3}$,a=4,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)滿足f(x+1)+f(1-x)=0,f(x+2)-f(2-x)=0且f($\frac{2}{3}$)=1,則f($\frac{1000}{3}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l1:y=kx,l2:y=2x+3,若兩直線垂直,則k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若sinα-sinβ=$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線y=k(x+2)(k>0)與焦點為F的拋物線y2=8x相交于A,B兩點,若$|{\overrightarrow{AF}}|=4|{\overrightarrow{BF}}|$,則k=( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系XOY中,以原點O為極點,X軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為ρ=1,曲線C2參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{5}cosθ}\\{y=2+\sqrt{5}sinθ}\end{array}\right.$(θ是參數(shù)).
(1)求曲線C1和C2的直角坐標(biāo)系方程;
(2)若曲線C1和C2交于兩點A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在(-∞,-1)∪(1,+∞)上的奇函數(shù),當(dāng)x>1時,f(x)=$\frac{x}{x-1}$
(1)當(dāng)x<-1時,求f(x)的解析式;
(2)求函數(shù)$f(\frac{1}{x})$的定義域;
(3)證明f(x)在(1,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-2≥0}\\{x-3y+4≥0}\\{x-y-2≤0}\end{array}\right.$,則z=(x-1)2+(y-5)2的取值范圍為(  )
A.[$\sqrt{10}$,20]B.[$\sqrt{10}$,26]C.[10,20]D.[10,26]

查看答案和解析>>

同步練習(xí)冊答案