20.已知x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,則函數(shù)F(x,y)=4x+y的最大值與最小值的差為( 。
A.24B.25C.26D.27

分析 設(shè)4x+y=m∈(0,26).由于x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,可得:$\frac{1}{x}$+$\frac{9}{y}$=26-m.變形為:26-m=$\frac{1}{m}$(4x+y)$(\frac{1}{x}+\frac{9}{y})$,利用基本不等式的性質(zhì)即可得出.

解答 解:設(shè)4x+y=m∈(0,26).
∵x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,
∴$\frac{1}{x}$+$\frac{9}{y}$=26-m.
∴26-m=$\frac{1}{m}$(4x+y)$(\frac{1}{x}+\frac{9}{y})$=$\frac{1}{m}$$(13+\frac{y}{x}+\frac{36x}{y})$≥$\frac{1}{m}(13+2\sqrt{\frac{y}{x}•\frac{36x}{y}})$=$\frac{25}{m}$,當(dāng)且僅當(dāng)y=6x時取等號.
化為:m2-26m+25≤0,
解得1≤m≤25,
∴函數(shù)F(x,y)=4x+y的最大值與最小值的差=25-1=24.
故選:A.

點評 本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若m,n是兩條不同的直線,m⊥平面α,則“m⊥n”是“n∥α”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知k∈Z,則(tan$\frac{5π}{12}$)k(tan$\frac{π}{12}$)k+2的值為( 。
A.7+4$\sqrt{3}$B.7-4$\sqrt{3}$C.2+$\sqrt{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=2sin(2x+θ+$\frac{π}{3}$)(-$\frac{π}{2}$≤θ<$\frac{3π}{2}$)為奇函數(shù),且在[-$\frac{π}{4}$,0]上為減函數(shù)的θ值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若焦點F(c,0)關(guān)于漸近線y=$\frac{a}$x的對稱點在另一條漸近線y=-$\frac{a}$x上,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知BC=8,D在BC上,BD=DC,∠BAC=135°,B=2C,求AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:在調(diào)查某校高一學(xué)生的平均身高時宜采用系統(tǒng)抽樣;命題q:在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等,則下列命題中為真命題的是(  )
A.¬qB.p∨(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=($\frac{1}{2}$)|x-1|+2cosπx(-4≤x≤6)的所有零點之和為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知M(4,0),N(1,0),若動點P滿足$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{NP}$|.
(1)求動點P的軌跡C的方程;
(2)設(shè)點A(0,2),點B是軌跡C上一動點,求|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊答案