12.在△ABC中,AB=2,AC=$\frac{2}{3}$,∠BAC=60°,設(shè)D為△ABC所在平面內(nèi)一點,$\overrightarrow{BC}$=2$\overrightarrow{CD}$.
(Ⅰ)求線段AD的長;
(Ⅱ)求∠DAB的大。

分析 (Ⅰ)在△ABC中,由題意和余弦定理求出BC、cos∠ACB,由誘導(dǎo)公式求出cos∠ACD,在△ACD中,由條件求出CD,由余弦定理求出AD;
(Ⅱ)在△ABD中求出BD,由余弦定理求出cos∠DAB,由內(nèi)角的范圍好特殊角的三角函數(shù)值求出∠DAB.

解答 解:(Ⅰ)由題意畫出圖象:
在△ABC中,AB=2,AC=$\frac{2}{3}$,∠BAC=60°,
則由余弦定理得,BC2=AB2+AC2-2•AB•AC•cos∠BAC
=4+$\frac{4}{9}$-$2×2×\frac{2}{3}×\frac{1}{2}$=$\frac{28}{9}$,
所以BC=$\frac{2\sqrt{7}}{3}$,
由余弦定理得,cos∠ACB=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2•AC•BC}$
=$\frac{\frac{4}{9}+\frac{28}{9}-4}{2×\frac{2}{3}×\frac{2\sqrt{7}}{3}}$=$-\frac{1}{2\sqrt{7}}$,
由∠ACB+∠ACD=π得,cos∠ACD=-cos∠ACB=$\frac{1}{2\sqrt{7}}$,
在△ACD中,由$\overrightarrow{BC}$=2$\overrightarrow{CD}$得CD=$\frac{1}{2}$BC=$\frac{\sqrt{7}}{3}$,
由余弦定理得,AD2=CD2+AC2-2•CD•AC•cos∠ACD
=$\frac{7}{9}+\frac{4}{9}-2×\frac{\sqrt{7}}{3}×\frac{2}{3}×\frac{1}{2\sqrt{7}}$=1,
則AD=1;
(Ⅱ)由(I)得,BD=BC+CD=$\frac{2\sqrt{7}}{3}$+$\frac{\sqrt{7}}{3}$=$\sqrt{7}$,
在△ABD中,由余弦定理得,
cos∠BAD=$\frac{A{B}^{2}+A{D}^{2}-B{D}^{2}}{2•AB•AD}$=$\frac{4+1-7}{2×2×1}$=$-\frac{1}{2}$,
∵0<∠BAD<π,∴∠BAD=$\frac{2π}{3}$.

點評 本題考查了余弦定理在解三角形的應(yīng)用,以及誘導(dǎo)公式,考查化簡、計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+bx(a≠0,a,b為常數(shù))滿足f(1-x)=f(1+x),且方程f(x)=2x有兩個相等實根;設(shè)g(x)=$\frac{1}{3}$x3-x-f(x).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求g(x)在[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某校在全校學生中開展物理和化學實驗操作大比拼活動,要求參加者物理、化學實驗操作都必須參加,若有30名學生參加這次活動,評委老師對這30名學生實驗操作按等級評價(只有A,B,C三個等級),結(jié)果統(tǒng)計如表:
物理實驗等級
學生數(shù)
化學實驗等接
 A
 A 3 8 3
 B 6 1 2
 C 4 2 1
(Ⅰ)若從這30名參加活動的學生中任取1人,求“物理實驗等級為A且化學實驗等級為B”的學生被抽取的概率;
(Ⅱ)記實驗操作等級A為3分,等級B為2分,等級C為1分,從這30名參加活動的學生中任取1人,其物理和化學實驗得分之和為ξ,求ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖1是某同學進入高三后12次數(shù)學測試成績的莖葉圖,這12次成績記為A1,A2,…,A12,圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)次數(shù)的算法流程圖,那么該算法流程輸出的結(jié)果是(  )
A.5B.7C.106D.114

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn.且an=$\frac{2}{3}$Sn+1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{lo{g}_{3}{a}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2015(x)=-sinx-cosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設(shè)甲、乙兩人每次射擊命中目標的概率分別為$\frac{3}{4}$和$\frac{4}{5}$,且各次射擊相互獨立,若按甲、乙、甲、乙的次序輪流射擊,直到有一人擊中目標就停止射擊,則停止射擊時,甲射擊了兩次的概率是$\frac{19}{400}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx-ax2-x.
(1)當a=$\frac{1}{2}$時,證明:f(x)在定義域上為減函數(shù);
(2)若a∈R,討論函數(shù)f(x)的零點情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)圖象如圖所示,則f(x)的解析式可能是( 。
A.f(x)=lnx-sinxB.f(x)=lnx+cosxC.f(x)=lnx+sinxD.f(x)=lnx-cosx

查看答案和解析>>

同步練習冊答案