18.《莊子•天下篇》中記述了一個(gè)著名命題:“一尺之錘,日取其半,萬世不竭”.反映這個(gè)命題本質(zhì)的式子是(  )
A.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$B.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$+…<2
C.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1D.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1

分析 根據(jù)已知可得每次截取的長(zhǎng)度構(gòu)造一個(gè)以$\frac{1}{2}$為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,但累加和小于1,進(jìn)而得到答案.

解答 解:根據(jù)已知可得每次截取的長(zhǎng)度構(gòu)造一個(gè)以$\frac{1}{2}$為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∵$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1,
故反映這個(gè)命題本質(zhì)的式子是$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是等比數(shù)列的前n項(xiàng)和公式,數(shù)列的應(yīng)用,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.根據(jù)歷年統(tǒng)計(jì)資料,我國(guó)東部沿海某地區(qū)60歲以上的老年人占20%,在一個(gè)人是60周歲以上的條件下,其患高血壓的概率為45%,則該地區(qū)一個(gè)人既是60周歲以上又患高血壓的概率是( 。
A.45%B.25%C.9%D.65%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在10件產(chǎn)品中有6件一級(jí)品,4件二級(jí)品,從中任取3件,其中至少有一件為二級(jí)品的概率為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.甲幾何體(上)與乙?guī)缀误w(下)的組合體的三視圖如圖所示,甲、乙的體積分別為V1、V2,則V1:V2等于(  )
A.1:4B.1:3C.2:3D.1:π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時(shí)間y的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),做出了散點(diǎn)圖(如圖).
$\overline x$$\overline y$$\overline w$$\sum_{i=1}^{10}{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^{10}{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^{10}{({x_i}-\overline x)}({y_i}-\overline y)$$\sum_{i=1}^{10}{({w_i}-\overline w)}({y_i}-\overline y)$
1.4720.60.782.350.81-19.316.2
表中wi=$\frac{1}{x_i^2},\overline w=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+$\fraci4ks2w6{x^2}$哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋轉(zhuǎn)角x的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)若旋轉(zhuǎn)角x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在數(shù)字1,2,3,4,5的排列a1a2a3a4a5中,滿足:a1<a2,a2>a3,a3<a4,a4>a5的排列個(gè)數(shù)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y取值如表:
x1245
y1357
從所得的散點(diǎn)圖分析可知:y與x具有線性相關(guān)關(guān)系,且線性回歸方程為y=1.4x+a,則a=(  )
A.-0.1B.-0.2C.0.1D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.用數(shù)字1,2,3和減號(hào)“-”組成算式進(jìn)行運(yùn)算,要求每個(gè)算式中包含所有數(shù)字,且每個(gè)數(shù)字和減號(hào)“-”只能用一次,則不同的運(yùn)算結(jié)果的種數(shù)為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A、B、C三種原料.已知生產(chǎn)1噸甲產(chǎn)品需A原料1噸,B原料1噸,C原料2噸;生產(chǎn)1噸乙產(chǎn)品需A原料1噸,B原料2噸,C原料1噸;每天可供使用的A原料不超過5噸,B原料和C原料均不超過8噸.
(Ⅰ) 若生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬元、4萬元,每天生產(chǎn)x噸甲產(chǎn)品和y噸乙產(chǎn)品共可獲得利潤(rùn)z萬元,請(qǐng)列出滿足上述條件的不等式組及目標(biāo)函數(shù);
(Ⅱ) 在(Ⅰ)的條件下,求該企業(yè)每天可獲得的最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案