7.已知不等式x2+px>4x+p-4.
(1)若不等式在2≤x≤4時有解,求實(shí)數(shù)p的取值范圍;
(2)若不等式在0≤p≤6時恒成立,求實(shí)數(shù)x的取值范圍.

分析 (1)不等式x2+px>4x+p-4化為x2+(p-4)x+4-p>0①,設(shè)f(x)=x2+(p-4)x+4-p,不等式①在2≤x≤4時有解時,f(2)>0,或f(4)>0,由此求出p的取值范圍;
(2)不等式x2+px>(4x+p-4)化為p(x-1)+(x2-4x+4)>0②,設(shè)g(p)=p(x-1)+(x2-4x+4),0≤p≤6時不等式②恒成立,得$\left\{\begin{array}{l}{g(0)>0}\\{g(6)>0}\end{array}\right.$,求出x的取值范圍即可.

解答 解:(1)不等式x2+px>4x+p-4可化為x2+(p-4)x+4-p>0①,
設(shè)f(x)=x2+(p-4)x+4-p,
當(dāng)不等式①在2≤x≤4時有解時,
即存在x∈[2,4],使f(x)>0,
所以f(2)>0,或f(4)>0成立,
即4+2(p-4)+4-p>0,或16+4(p-4)+4-p>0,
解得p>-$\frac{3}{4}$;
(2)不等式x2+px>(4x+p-4)化為p(x-1)+(x2-4x+4)>0②,
設(shè)g(p)=p(x-1)+(x2-4x+4),
因?yàn)?≤p≤6時不等式②恒成立,
即$\left\{\begin{array}{l}{g(0)>0}\\{g(6)>0}\end{array}\right.$,
所以$\left\{\begin{array}{l}{{x}^{2}-4x+4>0}\\{6(x-1){+(x}^{2}-4x+4)>0}\end{array}\right.$,
解得x<-1-$\sqrt{3}$,或x>-1+$\sqrt{3}$,且x≠-2.

點(diǎn)評 本題考查了不等式的恒成立問題,也考查了不等式在某一閉區(qū)間上有解的問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=sinx-2$\sqrt{3}$sin${\;}^2}\frac{x}{2}$$\frac{x}{2}$.f(x)在區(qū)間[0,$\frac{2π}{3}}$]上的最小值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列敘述正確的個數(shù)是( 。
①若a>b,則ac2>bc2;
②若命題p為真命題題,命題q為假命題,則p∨q為假命題;
③若命題p:?x0∈R,x${\;}_{0}^{2}$-x0+1≤0,則¬p:?x∈R,x2-x+1>0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知cos(π+α)=$\frac{1}{3}$,α是第二象限角,則tan2α=( 。
A.-$\frac{4\sqrt{2}}{9}$B.$\frac{4\sqrt{2}}{9}$C.-$\frac{4\sqrt{2}}{7}$D.$\frac{4\sqrt{2}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在1,2,3,4,5,6,7,8這組數(shù)據(jù)中,隨機(jī)取出五個不同的數(shù),則數(shù)字5是取出的五個不同數(shù)的中位數(shù)的概率為(  )
A.$\frac{9}{56}$B.$\frac{9}{28}$C.$\frac{9}{14}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若“p:x>a”是“q:x>1或x<-3”的充分不必要條件,則a的取值范圍是(  )
A.a≥1B.a≤1C.a≥-3D.a≤-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知角α的終邊經(jīng)過點(diǎn)P(-3,-4),則cos(90°+α)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖,其中,上學(xué)所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求圖中x的值;
(Ⅱ)若上學(xué)時間不少于1小時的新生可申請?jiān)趯W(xué)校住宿,請估計(jì)學(xué)校600名新生中有多少名學(xué)生可以申請?jiān)趯W(xué)校住宿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=3cos2x(x∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f($\frac{α}{2}$)=1,α為第一象限角,求tan(π-α)的值;
(3)求不等式f(x)>$\frac{3}{2}$的解集.

查看答案和解析>>

同步練習(xí)冊答案