分析 利用勾股定理求出BC的長,再由BC∥平面α,得出MN∥BC,結合三角形重心的性質求出MN的值.
解答 解:如圖所示,
△ABC中,AB=5,AC=7,∠BAC=90°,
∴BC=$\sqrt{{5}^{2}{+7}^{2}}$=$\sqrt{74}$;
又BC∥平面α,AB∩α=M,AC∩α=N,
∴MN∥BC;
又G是△ABC的重心,
∴$\frac{MN}{BC}$=$\frac{AG}{AD}$=$\frac{2}{3}$,
∴MN=$\frac{2}{3}$BC=$\frac{2}{3}$$\sqrt{74}$.
故答案為:$\frac{2}{3}$$\sqrt{74}$.
點評 本題考查了勾股定理的應用問題,也考查了空間中的線面平行的應用問題以及三角形的重心性質的應用問題,
是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要條件 | B. | 充分條件 | C. | 充要條件 | D. | 無關條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com