A. | [-1,+∞) | B. | [-$\frac{1}{2},+∞$) | C. | [-$\frac{1}{2},-\frac{1}{8}$] | D. | [-$\frac{1}{8},+∞$) |
分析 根據(jù)已知中函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈(0,2]時(shí),f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x∈(0,1]}\\{-lo{g}_{2}x,x∈(1,2]}\end{array}\right.$,求出x∈(-2,0]時(shí),函數(shù)的最小值,可得實(shí)數(shù)k的取值范圍.
解答 解:當(dāng)x∈(0,2]時(shí),f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x∈(0,1]}\\{-lo{g}_{2}x,x∈(1,2]}\end{array}\right.$,
故當(dāng)x∈(0,2]時(shí),函數(shù)的值域?yàn)椋篬-1,0],
又由函數(shù)f(x)滿足f(x+2)=2f(x),
∴x∈(-2,0]時(shí),f(x)的值域?yàn)椋篬-$\frac{1}{2}$,0],
若x∈(-2,0]時(shí),f(x)≤k有解,
則k≥$-\frac{1}{2}$,
即實(shí)數(shù)k的取值范圍是[-$\frac{1}{2},+∞$),
故選:B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù),存在性問題,解答的關(guān)鍵是將存在性問題,轉(zhuǎn)化為最值問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{4}{15}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2] | B. | (2,+∞) | C. | (-∞,1] | D. | (-∞,0)∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com