6.在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)k,使直線y=k(x+3)與圓x2+y2=1相交的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

分析 利用圓心到直線的距離小于半徑可得到直線與圓相交,可求出滿(mǎn)足條件的k,最后根據(jù)幾何概型的概率公式可求出所求.

解答 解:圓x2+y2=1的圓心為(0,0)
圓心到直線y=k(x+3)的距離為$\frac{|3k|}{\sqrt{{k}^{2}+1}}$
要使直線y=k(x+3)與圓x2+y2=1相交,則$\frac{|3k|}{\sqrt{{k}^{2}+1}}$<1,解得-$\frac{\sqrt{2}}{4}$<k<$\frac{\sqrt{2}}{4}$.
∴在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)k,使y=k(x+3)與圓x2+y2=1相交的概率為$\frac{\frac{2\sqrt{2}}{4}}{2}$=$\frac{\sqrt{2}}{4}$.
故選:C.

點(diǎn)評(píng) 本題主要考查了幾何概型的概率,以及直線與圓相交的性質(zhì),解題的關(guān)鍵弄清概率類(lèi)型,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,且AC=BD,PA⊥底面ABCD,PA=AB=1,$BC=\sqrt{3}$,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)證明:當(dāng)點(diǎn)E在邊BC上移動(dòng)時(shí),總有EF⊥AF;
(2)當(dāng)CE等于何值時(shí),PA與平面PDE所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某中學(xué)高中一年級(jí)、二年級(jí)、三年級(jí)的學(xué)生人數(shù)比為5:4:3,現(xiàn)要用分層抽樣的方法抽取一個(gè)容量為240的樣本,則所抽取的二年級(jí)學(xué)生的人數(shù)是80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)f(x)滿(mǎn)足:在定義域D內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱(chēng)函數(shù)f(x)為“1的飽和函數(shù)”.給出下列四個(gè)函數(shù):①f(x)=$\frac{1}{x}$;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的飽和函數(shù)”的所有函數(shù)的序號(hào)為( 。
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若點(diǎn)(a,27)在函數(shù)y=x3的圖象上,則tan$\frac{π}{a}$的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=sin(2x-$\frac{π}{2}$)(x∈R)下列結(jié)論錯(cuò)誤的是(  )
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是增函數(shù)D.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某校高一年級(jí)有學(xué)生400人,高二年級(jí)有學(xué)生360人,現(xiàn)采用分層抽樣的方法從全校學(xué)生中抽出55人,其中從高一年級(jí)學(xué)生中抽出20人,則從高三年級(jí)學(xué)生中抽取的人數(shù)為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,P為棱DC的中點(diǎn),則D1P與BC1所在的直線所成角的余弦值等于$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱AB上的動(dòng)點(diǎn).
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45°,求$\frac{AE}{AB}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案