15.如圖,在正方體ABCD-A1B1C1D1中,P為棱DC的中點(diǎn),則D1P與BC1所在的直線所成角的余弦值等于$\frac{\sqrt{10}}{5}$.

分析 連結(jié)AD1、AP,由AD1∥BC1,得∠AD1P就是D1P與BC1所在的直線所成角,由此能求出D1P與BC1所在的直線所成角的余弦值.

解答 解:連結(jié)AD1、AP,
∵AD1∥BC1,∴∠AD1P就是D1P與BC1所在的直線所成角,
設(shè)AB=2,則AP=D1P=$\sqrt{4+1}=\sqrt{5}$,AD1=$\sqrt{4+4}=2\sqrt{2}$,
∴cos∠AD1P=$\frac{A{{D}_{1}}^{2}+{D}_{1}{P}^{2}-A{P}^{2}}{2×A{D}_{1}×{D}_{1}P}$=$\frac{8+5-5}{2×2\sqrt{2}×\sqrt{5}}$=$\frac{\sqrt{10}}{5}$.
∴D1P與BC1所在的直線所成角的余弦值等于$\frac{\sqrt{10}}{5}$.
故答案為:$\frac{\sqrt{10}}{5}$.

點(diǎn)評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意余弦定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實數(shù)x滿足32x-4-$\frac{10}{3}•{3^{x-1}}$+9≤0且f(x)=log2$\frac{x}{2}•{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$.
(1)求實數(shù)x的取值范圍;
(2)求f(x)的最大值和最小值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在區(qū)間[-1,1]上隨機(jī)取一個數(shù)k,使直線y=k(x+3)與圓x2+y2=1相交的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在極坐標(biāo)系中,已知點(diǎn)A的極坐標(biāo)為(2$\sqrt{2}$,-$\frac{π}{4}$),圓E的極坐標(biāo)方程為ρ=4cosθ+4sinθ,試判斷點(diǎn)A和圓E的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當(dāng)-1≤x≤0時,f(x)=-x2,若直線y=-x+m與函數(shù)y=f(x)的圖象有兩個不同的公共點(diǎn),則實數(shù)m的值為( 。
A.2k-$\frac{1}{4}$(k∈Z)B.2k+$\frac{1}{4}$(k∈Z)C.2k或2k-$\frac{1}{4}$(k∈Z)D.2k或2k+$\frac{1}{4}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=(x3-x)2|x|圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.2015年高中生技能大賽中三所學(xué)校分別有3名、2名、1名學(xué)生獲獎,這6名學(xué)生要排成一排合影,則同校學(xué)生排在一起的概率是( 。
A.$\frac{1}{30}$B.$\frac{1}{15}$C.$\frac{1}{10}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知表面積為24π的球體,其內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直于底面)的高為4,則這個正四棱柱的側(cè)面積為( 。
A.32B.36C.48D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正三棱錐S-ABC中,E是側(cè)棱SC的中點(diǎn),且SA⊥BE,則SB與底面ABC所成角的余弦值為(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

同步練習(xí)冊答案