分析 連結(jié)AD1、AP,由AD1∥BC1,得∠AD1P就是D1P與BC1所在的直線所成角,由此能求出D1P與BC1所在的直線所成角的余弦值.
解答 解:連結(jié)AD1、AP,
∵AD1∥BC1,∴∠AD1P就是D1P與BC1所在的直線所成角,
設(shè)AB=2,則AP=D1P=$\sqrt{4+1}=\sqrt{5}$,AD1=$\sqrt{4+4}=2\sqrt{2}$,
∴cos∠AD1P=$\frac{A{{D}_{1}}^{2}+{D}_{1}{P}^{2}-A{P}^{2}}{2×A{D}_{1}×{D}_{1}P}$=$\frac{8+5-5}{2×2\sqrt{2}×\sqrt{5}}$=$\frac{\sqrt{10}}{5}$.
∴D1P與BC1所在的直線所成角的余弦值等于$\frac{\sqrt{10}}{5}$.
故答案為:$\frac{\sqrt{10}}{5}$.
點(diǎn)評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意余弦定理的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2k-$\frac{1}{4}$(k∈Z) | B. | 2k+$\frac{1}{4}$(k∈Z) | C. | 2k或2k-$\frac{1}{4}$(k∈Z) | D. | 2k或2k+$\frac{1}{4}$(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{30}$ | B. | $\frac{1}{15}$ | C. | $\frac{1}{10}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 36 | C. | 48 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{\sqrt{3}}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com