12.已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+3n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)25是否是該數(shù)列中的項(xiàng),若是,是第幾項(xiàng)?

分析 (1)利用遞推關(guān)系即可得出.
(2)令an=25,解出即可判斷出結(jié)論.

解答 解:(1)∵數(shù)列{an}的前n項(xiàng)和Sn=2n2+3n.
∴n=1時(shí),a1=S1=5;
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n2+3n-[2(n-1)2+3(n-1)]=4n+1.
∴an=4n+1.
(2)假設(shè)4n+1=25,解得n=6.
∴25是否是該數(shù)列中的第6項(xiàng).

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)F1與點(diǎn)F2是雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{10}$=1的左、右焦點(diǎn),點(diǎn)P在直線l:x-$\sqrt{3}$y+8+2$\sqrt{3}$=0上,當(dāng)∠F1PF2取最大值時(shí),$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的比值是( 。
A.$\sqrt{2}+1$B.$\sqrt{3}+1$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中.已知a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$.
(1)求證:{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列
(2)若對(duì)任意n∈N+,an>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y+2≥0}\\{4x-y-10≤0}\end{array}\right.$,z=kx+y(k∈R)僅在(4,6)處取得最大值,則k的取值范圍是(  )
A.k>1B.k>-1C.k<-$\frac{1}{2}$D.k<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,山頂上有一座電視塔,在塔頂B處測(cè)得地面上一點(diǎn)A的俯角α=60°,在塔底C處測(cè)得點(diǎn)A的俯角β=45°,已知塔高60m,則山高為30($\sqrt{3}$+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷方程$\frac{x}{4}$-cosx=0的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R,若函數(shù)f(x)的圖象與x軸存在交點(diǎn),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(為參數(shù))的傾斜角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)A1,A2分別為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右頂點(diǎn),若雙曲線上存在點(diǎn)M使得兩直線斜率${k_{M{A_1}}}{k_{M{A_2}}}<2$,則雙曲線C的離心率的取值范圍為( 。
A.$(0,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},+∞)$D.(0,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案