15.已知函數(shù)f(x)在區(qū)間[a,b]上有單調(diào)性,且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上有0或1個(gè)根.

分析 若函數(shù) f(x)在區(qū)間[a,b]內(nèi)單調(diào),分類討論,根據(jù)零點(diǎn)存在定理,我們易得到結(jié)論.

解答 解:函數(shù)f(x)在區(qū)間[a,b]上單調(diào),且圖象是連續(xù)不斷的,
若f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上必有唯一的實(shí)根;
若函數(shù) f(x)在區(qū)間[a,b]上不連續(xù),也可能沒有零點(diǎn).
故答案為:0或1.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,正確運(yùn)用零點(diǎn)存在定理是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某三棱椎的三視圖如圖所示,則其體積為$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知θ∈(0,$\frac{π}{2}$),則sinθ+$\sqrt{3}$cosθ的取值范圍為(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.遞增的等差數(shù)列{an}滿足:a1+a2+a3=12,a1a2a3=63,Sn是數(shù)列{an}的前n項(xiàng)和,則使Sn>2018的最小整數(shù)n的值為(  )
A.80B.84C.87D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知c=2a,sinA=$\frac{1}{2}$,則sinC=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求不等式$\frac{{x}^{2}-2x-3}{{x}^{2}-2x}$>0的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)=x-aex,x∈R,已知函數(shù)y=f(x)有兩個(gè)零點(diǎn)x1,x2,且x1<x2,則a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.給定橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),稱圓心在原點(diǎn)O,半徑為$\sqrt{{a^2}+{b^2}}$的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F($\sqrt{2}$,0),且其短軸上的一個(gè)端點(diǎn)到F的距離為$\sqrt{3}$.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)過點(diǎn)(1,0)作一條傾斜角為30°的直線與橢圓交于A,B兩點(diǎn).若在橢圓上存在一點(diǎn)C滿足$\overrightarrow{OC}$=λ($\overrightarrow{OA}$+$\overrightarrow{OB}$),試求λ的值;
(3)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖1,等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖2).

(1)求證:PB⊥DE;
(2)若PE⊥BE,PE=1,求點(diǎn)B到平面PEC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案