20.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=2,點(diǎn)E,F(xiàn)分別為AB和PD的中點(diǎn).
(Ⅰ)求證:直線(xiàn)AF∥平面PEC;
(Ⅱ)求點(diǎn)F到平面PEC的距離.

分析 (1)設(shè)PC的中點(diǎn)為Q,連接EQ,F(xiàn)Q,證明四邊形AEQF為平行四邊形,得到AF∥EQ,即可證明AF∥平面PEC.
(2)點(diǎn)F到平面PEC的距離等于點(diǎn)A到平面PEC的距離,設(shè)為d.通過(guò)VA-PEC=VP-AEC,求解即可.

解答 (1)證明:設(shè)PC的中點(diǎn)為Q,連接EQ,F(xiàn)Q,由題意,F(xiàn)Q∥DC且$FQ=\frac{1}{2}CD$,AE∥CD且$AE=\frac{1}{2}CD$,故AE∥FQ且AE=FQ,所以,四邊形AEQF為平行四邊形
所以,AF∥EQ,且EQ?平面PEC,AF?平面AEC
所以,AF∥平面PEC(6分)
(2)解:由(1),點(diǎn)F到平面PEC的距離等于點(diǎn)A到平面PEC的距離,設(shè)為d.
由條件易求$EC=\sqrt{7}$,PE=$\sqrt{7}$,PC=2$\sqrt{2}$,EQ=$\sqrt{5}$故${S_{△PEC}}=\frac{1}{2}×2\sqrt{2}×\sqrt{5}=\sqrt{10}$${S_{△AEC}}=\frac{1}{2}×1×\sqrt{3}=\frac{{\sqrt{3}}}{2}$,
所以由VA-PEC=VP-AEC得$\frac{1}{3}\sqrt{10}•d=\frac{1}{3}•\frac{{\sqrt{3}}}{2}•2$,
解得$d=\frac{{\sqrt{30}}}{10}$(12分)

點(diǎn)評(píng) 本題考查空間點(diǎn)線(xiàn)面距離的求法,等體積法的應(yīng)用,直線(xiàn)與平面平行的判定定理的應(yīng)用,考查計(jì)算能力以及邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,輸入p=10,則輸出的A為( 。
A.-12B.10C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)的定義域?yàn)椋?+3a,2-a),且f(x+1)為奇函數(shù),則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四棱錐P-ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長(zhǎng)為2的等邊三角形,$PA=DM=2\sqrt{3}$.
(Ⅰ)求證:平面PAM⊥平面PDM;
(Ⅱ)若點(diǎn)E為PC中點(diǎn),求二面角P-MD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.閱讀如圖所示的程序框圖,當(dāng)輸出的結(jié)果S為0時(shí),判斷框中應(yīng)填( 。
A.n≤4B.n≤5C.n≤7D.n≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知球O的半徑為1,A,B,C三點(diǎn)都在球面上,且∠AOB=∠AOC=∠BOC=90°,則球心O到平面ABC的距離為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.6826,則P(X>4)等于( 。
(附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),且P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.0.1588B.0.1587C.0.1586D.0.1585

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)a=${∫}_{0}^{π}$(sinx-1+2cos2$\frac{x}{2}$)dx,則(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6•(x2+2)的展開(kāi)式中常數(shù)項(xiàng)是( 。
A.332B.-332C.320D.-320

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,b≠c,且sin2C-sin2B=$\sqrt{3}$sinBcosB-$\sqrt{3}$sinCcosC.
(1)求角A的大。
(2)若a=$\sqrt{3}$,sinC=$\frac{3}{4}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案