5.已知x3+sinx=m,y3+$\frac{1}{8}$sin2y=-$\frac{1}{8}$m,且x,y∈(-$\frac{π}{4},\frac{π}{4}$),m∈R,則tan(x+2y+$\frac{π}{3}$)=$\sqrt{3}$.

分析 構(gòu)造函數(shù)f(x)=x3+sinx,則f(x)+f(2y)=0,根據(jù)f(x)的奇偶性與單調(diào)性可得x+2y=0,于是tan(x+2y+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$.

解答 解:令f(x)=x3+sinx,
則f(x)在(-$\frac{π}{4}$,$\frac{π}{4}$)上為增函數(shù),且f(x)為奇函數(shù).
∵y3+$\frac{1}{8}$sin2y=-$\frac{1}{8}$m,∴8y3+sin2y=-m,
即f(2y)=-m,
∴f(x)+f(2y)=0,
∴x+2y=0,
∴tan(x+2y+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查了函數(shù)單調(diào)性,奇偶性的判斷與應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正三棱錐的底面邊長為3,高為h,若正三棱錐的側(cè)面積與體積的比為4$\sqrt{3}$,則正三棱錐的高為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3-3x2+1(a>0),g(x)=lnx
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)用max{m,n}表示m,n中的最大值.設(shè)函數(shù)h(x)=max{f(x),g(x)}(x>0),討論h(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2-aln(x+2),g(x)=xex,且f(x)存在兩個極值點x1、x2,其中x1<x2
(1)求實數(shù)a的取值范圍;
(2)求g(x)在區(qū)間(-2,0)上的最小值;
(3)證明不等式:$\frac{f({x}_{1})}{{x}_{2}}$<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a,b,m,n∈R,且a2+b2=3,ma+nb=3,則$\sqrt{{m}^{2}{+n}^{2}}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)是定義在R上的奇函數(shù),x>0時,f(x)=2x2+2x,則x<0時,f(x)=-2x2+2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法中正確的是( 。
A.命題“若a>b>0,則$\frac{1}{a}$<$\frac{1}$”的逆命題是真命題
B.命題p:?x∈R,x2-x+1>0,則¬p:?x0∈R,x02-x0+1<0
C.“a>1,b>1”是“ab>1”成立的充分條件
D.在某項測量中,測量結(jié)果x服從正態(tài)分布N(1,σ2)(σ>0),若x在(0,1)內(nèi)取值的概率為0.4,則x在(0,2)內(nèi)取值的概率為0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O(shè)為圓心,AB為直徑),現(xiàn)對其進(jìn)行改建,在AB的延長線上取點D,OD=80m,在半圓上選定一點C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2.設(shè)∠AOC=xrad.
(1)寫出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x|x2-2x≤0},B={y|y=x2-2x,x∈A}.則A∪B=[-1,2].

查看答案和解析>>

同步練習(xí)冊答案