分析 (I)令f′(x)=0求出f(x)的極值點,得出f(x)的單調(diào)性與單調(diào)區(qū)間,從而得出f(x)的極值;
(II)對x和a的范圍進行討論得出f(x),g(x)在(0,+∞)上的單調(diào)性,利用單調(diào)性及最值判斷f(x),g(x)的零點個數(shù),從而得出h(x)的零點個數(shù).
解答 解:( I)f′(x)=3ax2-6x=3x(ax-2).
令f′(x)=0,得x1=0,x2=$\frac{2}{a}$.
∵a>0,x1<x2,
f′(x)及f(x)符號變化如下,
x | (-∞,0) | 0 | (0,$\frac{2}{a}$) | $\frac{2}{a}$ | ($\frac{2}{a}$,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
點評 本題考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,函數(shù)最值的求法,函數(shù)零點個數(shù)的判斷,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否近視 | 1~50 | 951~1000 | 合計 |
年級名次 | |||
近視 | 41 | 32 | 73 |
不近視 | 9 | 18 | 27 |
合計 | 50 | 50 | 100 |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1.5 | C. | 2 | D. | 2.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1≤x≤2} | B. | {x|2<x≤4} | C. | {x|1≤x<2} | D. | {x|2≤x<4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com