8.已知三棱錐的四個面都是腰長為2的等腰三角形,該三棱錐的正視圖如圖所示,則該三棱錐的體積是$\frac{\sqrt{3}}{3}$

分析 先求出三棱錐高為h=1,由此能求出該三棱錐的體積.

解答 解:∵三棱錐每個面都是腰為2的等腰三角形,∴由正視圖可得如下俯視圖,

且三棱錐高為h=1,
則該三棱錐的體積V=$\frac{1}{3}sh$=$\frac{1}{3}×(\frac{1}{2}×2\sqrt{3}×1)×1$=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.

點評 本題考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意三棱錐的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}中;a1=3,a2=6,且an+2=an+1-an,則數(shù)列的第100項為(  )
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)點F為橢圓$C:\frac{x^2}{4m}+\frac{y^2}{3m}=1(m>0)$的左焦點,直線y=x被橢圓C截得弦長為$\frac{{4\sqrt{42}}}{7}$.
(1)求橢圓C的方程;
(2)圓$P:{(x+\frac{{4\sqrt{3}}}{7})^2}+{(y-\frac{{3\sqrt{3}}}{7})^2}={r^2}(r>0)$與橢圓C交于A,B兩點,M為線段AB上任意一點,直線FM交橢圓C于P,Q兩點AB為圓P的直徑,且直線FM的斜率大于1,求|PF|•|QF|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個高為1的正三棱錐的底面正三角形的邊長為6,則此三棱錐的側(cè)面積為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.拋物線x=ay2(a≠0)的焦點坐標是($\frac{1}{4a}$,0);雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$的頂點到漸近線的距離為$\frac{\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{bn}是等比數(shù)列,b9是3和5等差中項,則b1b17=(  )
A.25B.16C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知G點為△ABC的重心,設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c且滿足$\overrightarrow{BG}$⊥$\overrightarrow{CG}$,若$\frac{a^2}{cosA}=λbc$則實數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,在長方體ABCD-A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中點,則異面直線BC1與PD所成角等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果二面角α-l-β內(nèi)部一點P到α,β,l的距離分別為1,1,$\sqrt{2}$,該二面角的大小為90°.

查看答案和解析>>

同步練習(xí)冊答案