13.在△ABC中,已知sinA:sinB:sinC=6:8:13,則△ABC是(  )
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

分析 由正弦定理可知a:b;c=6:8:13,利用余弦定理求出最大角C的余弦判斷C與90°的大小關(guān)系.

解答 解:△ABC中,∵sinA:sinB:sinC=6:8:13,
∴a:b;c=6:8:13.
不妨設(shè)a=6,b=8,c=13.
則cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{36+64-169}{2×6×8}=-$$\frac{23}{32}$<0.
∴C是鈍角.
故選:A.

點(diǎn)評 本題考查了正弦定理,余弦定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{AB}$=(2,0),$\overrightarrow{AC}$=(1,6),則(2$\overrightarrow{AB}$+3$\overrightarrow{CA}$)$•\overrightarrow{BC}$=( 。
A.109B.101C.-107D.-109

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線16x2-9y2=144的離心率為(  )
A.$\frac{5}{3}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=$\left\{\begin{array}{l}{|2x+3|,x∈(-6,-1)}\\{{x}^{2},x∈[-1,1]}\\{x,(x∈[1,6]}\end{array}\right.$則f($\sqrt{2}$)=$\sqrt{2}$,則f(-π)=2π-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:存在x0>0,使2${\;}^{{x}_{0}}$<1,則¬p是(  )
A.對任意x>0,都有2x≥1B.對任意x≤0,都有2x<1
C.存在x0>0,使2${\;}^{{x}_{0}}$≥1D.存在x0≤0,使2${\;}^{{x}_{0}}$<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,已知b=6cm,c=3cm,A=60°,則角C=$\frac{π}{6}$弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.箱子中有形狀、大小都相同的3只紅球和2只白球,一次摸出2只球,則摸到的2球顏色不同的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.2016年“雙節(jié)”期間,高速公路車輛較多,某調(diào)查公司在一服務(wù)區(qū)從小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔35輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:
[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(Ⅰ)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;
(Ⅱ)若從車速在[60,70)的車輛中任抽取2輛,求車速在[65,70)的車輛至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a3=4,{an}的前3項(xiàng)和為7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a1b1+a2b2+…+anbn=(2n-3)2n+3,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.求證:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≤2-$\frac{1}{n}$.

查看答案和解析>>

同步練習(xí)冊答案