8.已知命題p:存在x0>0,使2${\;}^{{x}_{0}}$<1,則¬p是(  )
A.對任意x>0,都有2x≥1B.對任意x≤0,都有2x<1
C.存在x0>0,使2${\;}^{{x}_{0}}$≥1D.存在x0≤0,使2${\;}^{{x}_{0}}$<1

分析 由全稱命題和特稱命題的關(guān)系和否定規(guī)律可得.

解答 解:∵命題p:存在x0>0,使2${\;}^{{x}_{0}}$<1為特稱命題,
∴¬p為全稱命題,即對任意x>0,都有2x≥1.
故選:A

點評 本題考查含量詞命題的否定,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若函數(shù)y=f(x)的圖象上每一點的縱坐標保持不變,橫坐標伸長到原來的2倍,再將整個圖象沿x軸向左平移$\frac{π}{2}$個單位,沿y軸向下平移1個單位,得到函數(shù)y=sin$\frac{1}{2}$x的圖象,則y=f(x)是( 。
A.y=sin(x+$\frac{π}{2}$)+1B.y=sin(x-$\frac{π}{2}$)+1C.y=sin(x+$\frac{π}{4}$)+1D.y=sin(x-$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法錯誤的是( 。
A.若a,b∈R,且a+b>4,則a,b至少有一個大于2
B.“?x0∈R,${2^{x_0}}=1$”的否定是“?x∈R,2x≠1”
C.a>1,b>1是ab>1的必要條件
D.△ABC中,A是最大角,則sin2A>sin2B+sin2C是△ABC為鈍角三角形的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.關(guān)于x的不等式$\frac{x+1}{3-x}<0$的解集( 。
A.(-∞,-1)B.(-∞,-1)∪(3,+∞)C.(-1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算:
(1)$\sqrt{{x^2}-6x+9}$-|4-x|(x<3);
(2)log2(47×25)+log26-log23;
(3)${0.0081^{\frac{1}{4}}}+{({4^{-\frac{3}{4}}})^2}+{(\sqrt{8})^{-\frac{4}{3}}}-{16^{-0.75}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,已知sinA:sinB:sinC=6:8:13,則△ABC是( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別是a,b,c,已知$c=\sqrt{6},C=\frac{2π}{3}$.
(Ⅰ)若$a=\sqrt{2}$,求b;
(Ⅱ)若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合M={-2,-1,0,1},N={x|1≤2x≤4,x∈Z},則M∩N=(  )
A.{-2,-1,0,1,2}B.{0,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.以橢圓$\frac{x^2}{4}+{y^2}$=1的焦點為頂點,長軸頂點為焦點的雙曲線的漸近線方程是y=±$\frac{\sqrt{3}}{3}$x,離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案