有甲乙丙三瓶糖水,濃度依次為63%、42%、28%,其中甲瓶有11千克.現(xiàn)將甲乙兩瓶中的糖水混和,濃度變?yōu)?9%;然后把丙瓶中的糖水全部倒入混合液中,得到濃度為35%的糖水,請問原來丙瓶有多少千克糖水?
考點:根據(jù)實際問題選擇函數(shù)類型
專題:應用題,函數(shù)的性質及應用
分析:先求出原來甲乙兩瓶糖水質量比,再求出甲乙混合后的質量與丙的質量比,即可得出結論.
解答: 解:63%-49%=14%,49%-42%=7%
所以原來甲乙兩瓶糖水質量比為7%:14%=1:2
所以乙瓶有11÷
1
2
=22千克
所以甲乙混合后有11+22=33千克
49%-35%=14%,35%-28%=7%
所以甲乙混合后的質量與丙的質量比為7%:14%=1:2
所以原來丙瓶有33÷
1
2
=66千克.
答:原來丙瓶有66千克糖水.
點評:本題考查利用數(shù)學知識解決實際問題,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知tanα=2,求sin2α-3sinαcosα+1的值;
(2)求函數(shù)y=cos2x+sinx的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將A、B、C、D四張卡片按一定順序排成一行,要求自左向右,且A不排第一,B不排第二,C不排第三,D不排第四,試寫出這四張卡片所有不同的排法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-2≤a≤4,3≤b≤6,求ab的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)如圖程序,畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為1,公差為2的等差數(shù)列,Sn表示{an}的前n項和.
(1)求an及Sn;
(2)設數(shù)列{
1
Sn
}的前n項和為Tn,求證:當n∈N+都有Tn
n
n+1
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=-2x2-x+1的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上的雙曲線
x2
a2
-
y2
b2
=1實軸長為4,離心率等于
7
2

(1)寫出雙曲線方程;
(2)若該雙曲線的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.求直線A1P與A2Q交點的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知同時滿足下列兩個性質的函數(shù)f(x)稱為“A型函數(shù)”.
①函數(shù)f(x)在其定義域上是單調函數(shù);
②f(x)的定義域內存在區(qū)間[a,b],使得f(x)在[a,b]上的值域為[a,b].
(1)判斷函數(shù)f(x)=x2-x+1,(x>0)是否是“A型函數(shù)”;
(2)若函數(shù)g(x)=-x3是“A型函數(shù)”,求出滿足②的區(qū)間[a,b]中a,b的值;
(3)若h(x)=
x
-t“A型函數(shù)”,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案