9.已知集合A={x∈R||x-1|<2},Z為整數(shù)集,則集合A∩Z中所有元素的和等于( 。
A.2B.3C.4D.5

分析 求出A中不等式的解集確定出A,找出A與Z的交集,求出交集中所有元素的和即可.

解答 解:由A中|x-1|<2,
解得:-2<x-1<2,即-1<x<3,即A=(-1,3),
∴A∩Z={0,1,2},
則集合A∩Z中所有元素的和等于0+1+2=3,
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x3+ax2+bx+c的一個(gè)零點(diǎn)為x=1,另外兩個(gè)零點(diǎn)可分別作為一個(gè)橢圓和一個(gè)雙曲線的離心率,則$\frac{a}$取值范圍是(-2,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)A(x1,y1),B(x2,y2)是函數(shù)$f(x)=2sin(2x+\frac{π}{3})+1$圖象上的任意兩點(diǎn),點(diǎn)M滿足$\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,其中O是坐標(biāo)原點(diǎn),若點(diǎn)M的橫坐標(biāo)是-$\frac{π}{6}$,則點(diǎn)M的縱坐標(biāo)是( 。
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足0<a1<1,an+1=an-ln(an+1);數(shù)列{bn}滿足${b_1}=\frac{1}{2},{b_{n+1}}=\frac{1}{2}(n+1){b_n}$.
(Ⅰ)求證:0<an+1<an<1;
(Ⅱ)若a1=$\frac{\sqrt{2}}{2}$且an+1<$\frac{{{a}_{n}}^{2}}{2}$,則當(dāng)n≥2時(shí),求證:bn>an•n!.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x的反函數(shù)為f-1(x)
(1)若f-1(x)-f-1(1-x)=1,求實(shí)數(shù)x的值;
(2)若關(guān)于x的方程f(x)+f(1-x)-m=0在區(qū)間[1,2]內(nèi)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線過點(diǎn)(0,1)和(0,-1),其準(zhǔn)線為圓x2+y2=4的切線,則該拋物線焦點(diǎn)的方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$(y≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取60所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取36所學(xué)校,中學(xué)中抽取18所學(xué)校.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某校對(duì)高三年級(jí)1600名男女學(xué)生的視力狀況進(jìn)行調(diào)查,現(xiàn)用分層抽樣的方法抽取一個(gè)容量是200的樣本,已知樣本中女生比男生少10人,則該校高三年級(jí)的女生人數(shù)是760.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在數(shù)列{an}中,a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{1}{2{a}_{n}-1}$,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列{λan+$\frac{1}{_{n}}$}為等差數(shù)列?若存在,求出λ;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案