Rt△ABC的三邊長分別是AC=3,BC=4,AB=5,以AB所在直線為軸,將此三角形旋轉(zhuǎn)一周,求所得到的旋轉(zhuǎn)體的表面積和體積.
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺),棱柱、棱錐、棱臺的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:利用等面積求出OC,再求所得到的旋轉(zhuǎn)體的表面積和體積.
解答: 解:如圖,旋轉(zhuǎn)后圖形的軸截面是四邊形ACBC',
連結(jié)CC'交AB于O,則CC'⊥AB
∵AC=3,BC=4,AB=5
∴AB2=AC2+BC2,
∴△ABC是直角三角形,
∴S△ABC=
1
2
AB×OC=
1
2
AC×BC
∴OC=2.4,
∴旋轉(zhuǎn)體的體積=兩個圓錐體積和=
1
3
×π×2.42×AB=
48π
5

旋轉(zhuǎn)體的表面積=
1
2
×2π×2.4×(3+4)=
84π
5
點(diǎn)評:本題考查旋轉(zhuǎn)體的表面積和體積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(1,
3
2
),離心率為
3
2
,又橢圓內(nèi)接四邊形ABCD(點(diǎn)A、B、C、D在橢圓上)的對角線AC,BD相交于點(diǎn)P(1,
1
4
),且
AP
=2
PC
,
BP
=2
PD

(1)求橢圓的方程;
(2)求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)是R上的增函數(shù),且過(-3,-1)和(1,2)兩點(diǎn),集合A={x|f(x)<-1或f(x)>2},關(guān)于x的不等式(
1
2
2x>2-a-x(a∈R)的解集為B.
(1)求集合A;
(2)求使A∩B=B成立的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中國首屆綠色運(yùn)動會2011年10月18日至11月2日在安徽池州舉行.綠運(yùn)會期間,“上海城”舉辦了綠色產(chǎn)品展銷會,并在展銷會場設(shè)有購物滿50元就獲得一次有獎摸球活動.一個不透明的袋子中裝有大小相同的8個球,其中標(biāo)有1,2,3,4數(shù)字的球各2個,現(xiàn)從中任意抽取2個,用ξ表示抽取的這兩個球上的數(shù)字之和.求:
(Ⅰ)抽取的兩個球的數(shù)字均不相同的概率;
(Ⅱ)ξ的概率分布與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個非零向量
a
b
滿足|
a
|=4,|
b
|=2,且
a
b
夾角為60°.
(1)求
a
b
;
(2)|
a
+
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|log2(x-3)≥1},B={x|
1
4
≤{2x-a≤32}.
(1)當(dāng)a=1時,求A∩B;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-loga(x+2)+1(a>0,a≠1)的圖象過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的周長為5;
②函數(shù)f(x)=sin(2x+
π
3
)(x∈R)的表達(dá)式可改寫為f(x)=cos(2x-
π
6
);
③函數(shù)y=tan3x的定義域是{x|x≠kπ+
π
6
,k∈Z};
④函數(shù)f(x)=3sin(2x-
π
3
)的圖象關(guān)于直線x=
11
12
π對稱.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①對于向量
a
、
b
c
,若
a
b
,
b
c
,則
a
c
;
②若角的集合A={α|α=
2
+
π
4
,k∈N}.B={β|β=kπ±
π
4
,k∈Z},則A=B;
③函數(shù)y=2x的圖象與函數(shù)y=x2的圖象有且僅有2個公共點(diǎn);
④將函數(shù)f(-x)的圖象向右平移2個單位,得到f(-x+2)的圖象.
其中真命題的序號是
 
.(請寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案