【題目】已知橢圓C:+=1(ab0)的離心率為,且過點(1,).

(I)求橢圓C的方程;

(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點,求OAB面積的最大值,及取得最大值時直線l的方程.

【答案】(I)(Ⅱ)OAB面積的最大值為,此時直線方程

【解析】

試題分析:(1)運用橢圓的離心率公式和點滿足橢圓方程,解方程可得a,b,進(jìn)而得到橢圓方程;(2)討論當(dāng)k不存在時,當(dāng)k存在時,設(shè)直線為y=kx+m,A,B,將直線y=kx+m代入橢圓方程,運用韋達(dá)定理和弦長公式,以及直線和圓相切的條件:d=r,結(jié)合基本不等式即可得到所求面積的最大值和直線l的方程

試題解析:(1)由題意可得,e==,a2﹣b2=c2,點(1,)代入橢圓方程,可得

+=1,解得a=,b=1,即有橢圓的方程為;

(2)①當(dāng)k不存在時,x=±時,可得y=±,SOAB=××=;

②當(dāng)k存在時,設(shè)直線為y=kx+m,A(x1,y1),B(x2,y2),

將直線y=kx+m代入橢圓方程可得(1+3k2)x2+6kmx+3m2﹣3=0,

x1+x2=﹣,x1x2=,

由直線l與圓O:x2+y2=相切,可得=,即有4m2=3(1+k2),

|AB|==

==

==2,

當(dāng)且僅當(dāng)9k2= 即k=±時等號成立,可得SOAB=|AB|r×2×=,

即有OAB面積的最大值為,此時直線方程y=±x±1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個小組的頻率分別時0.1,0.3,0.4,第一小組的頻數(shù)為5.

(1)求第四小組的頻率?

(2)問參加這次測試的學(xué)生人數(shù)是多少?

(3)問在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在實數(shù),使得函數(shù)對定義域內(nèi)的任意均滿足,且存在使得,存在使得,則稱直線為函數(shù)分界線.在下列說法中正確的是__________(寫出所有正確命題的編號).

①任意兩個一次函數(shù)最多存在一條分界線”;

分界線存在的兩個函數(shù)的圖象最多只有兩個交點;

分界線;

分界線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種分別稱為品種甲和品種乙進(jìn)行田間試驗選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機(jī)選小塊地種植品種甲,另外小塊地種植品種乙

1假設(shè),求第一大塊地都種植品種甲的概率;

2試驗時每大塊地分成小塊,即,試驗結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量單位:kg/hm2如下表:

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , 的中點, 交于點,且平面.

(Ⅰ)證明:平面平面;

(Ⅱ)若, 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng), 取一切非負(fù)實數(shù)時,若,求的范圍;

(2)若函數(shù)存在極大值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=3,通項an與前n項和Sn之間滿足2an=SnSn1(n≥2).
(1)求證 是等差數(shù)列,并求公差;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案