16.正方體ABCD-A1B1C1D1的棱長為1,E為BB1的中點(diǎn),F(xiàn)為AD的中點(diǎn),以DA,DC,DD1為x軸、y軸、z軸建立空間直角坐標(biāo)系,設(shè)平面D1EF的法向量為(ak,bk,ck)(k≠0),則平面D1EF的法向量是(4k,-3k,2k)(k≠0).

分析 求出各個(gè)點(diǎn)的坐標(biāo),進(jìn)而求出向量$\overrightarrow{{D}_{1}E}$,$\overrightarrow{{D}_{1}F}$的坐標(biāo),結(jié)合$\left\{\begin{array}{l}\overrightarrow{m}•\overrightarrow{{D}_{1}E}=0\\ \overrightarrow{m}•\overrightarrow{{D}_{1}F}=0\end{array}\right.$,即$\left\{\begin{array}{l}ak+bk-\frac{1}{2}ck=0\\ \frac{1}{2}ak-ck=0\end{array}\right.$,可得答案.

解答 解:如下圖所示:

∵正方體ABCD-A1B1C1D1的棱長為1,E為BB1的中點(diǎn),F(xiàn)為AD的中點(diǎn),
∴D1(0,0,1),E(1,1,$\frac{1}{2}$),F(xiàn)($\frac{1}{2}$,0,0),
則$\overrightarrow{{D}_{1}E}$=(1,1,-$\frac{1}{2}$),$\overrightarrow{{D}_{1}F}$=($\frac{1}{2}$,0,-1),
設(shè)平面D1EF的法向量為$\overrightarrow{m}$=(ak,bk,ck)(k≠0),
則$\left\{\begin{array}{l}\overrightarrow{m}•\overrightarrow{{D}_{1}E}=0\\ \overrightarrow{m}•\overrightarrow{{D}_{1}F}=0\end{array}\right.$,即$\left\{\begin{array}{l}ak+bk-\frac{1}{2}ck=0\\ \frac{1}{2}ak-ck=0\end{array}\right.$,
令c=2,則a=4,b=-3,
故平面D1EF的法向量是(4k,-3k,2k),
故答案為:(4k,-3k,2k)(k≠0)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面的法向量,熟練掌握平面法向量的求法,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出a的值為( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:$\frac{cos(10π+α)sinα}{sin(-α-2π)cos(-π-α)cos(π+α)}$=-$\frac{1}{cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)對(duì)于任意實(shí)數(shù)x滿足條件f(x+2)=-$\frac{1}{f(x)}$(f(x)≠0).
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)若f(1)=-5,求f(f(5))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}滿足a1=4,2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,n∈N*
(1)證明:數(shù)列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差數(shù)列;
(2)求使lga1+lga2+…+lgan>4成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=tan$\frac{x}{a}$(a∈N*)的最小正周期是aπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x是三角形的內(nèi)角,且sinx-cos(x-π)=$\frac{1}{5}$,則cos2x=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P、A、B、C滿足$\overrightarrow{AB}$=$\overrightarrow{PB}$+$\overrightarrow{PC}$,其中點(diǎn)A、B、C不共線,則點(diǎn)P所在的位置是AC的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.定義域?yàn)镽的函數(shù)f(x)滿足:對(duì)任意的m,n∈R有f(m+n)=f(m)•f(n),且當(dāng)x≥0時(shí),有0<f(x)<1,f(4)=$\frac{1}{16}$.
(1)求f(0)的值;
(2)證明:f(x)>0在R上恒成立;
(3)證明:f(x)在R上是減函數(shù);
(4)若x>0時(shí),不等式f(x+ax)>f(2+x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案