在平面內(nèi),余弦定理給出了三角形的三條邊與其中一個角的關(guān)系,如:a2=b2+c2-2bccosA,把四面體V-BCD與三角形作類比,設(shè)二面角V-BC-D,V-CD-B,V-BD-C,C-VB-D,B-VC-D,B-VD-C的大小依次為α1,α2,α3,β1,β2,β3我們可以得到“四面體的余弦定理”:
 
.(只需寫出一個關(guān)系式)
考點(diǎn):類比推理
專題:規(guī)律型,推理和證明
分析:這是一個類比推理的題,在由平面圖形到空間圖形的類比推理中,一般是由點(diǎn)的性質(zhì)類比推理到線的性質(zhì),由線的性質(zhì)類比推理到面的性質(zhì),
解答: 解:由已知在平面內(nèi),余弦定理給出了三角形的三條邊與其中一個角的關(guān)系,如:a2=b2+c2-2bccosA,把四面體V-BCD與三角形作類比,設(shè)二面角V-BC-D,V-CD-B,V-BD-C,C-VB-D,B-VC-D,B-VD-C的大小依次為α1,α2,α3,β1,β2,β3我們可以得到“四面體的余弦定理”:
S2△BCD=S2△VBC+S2△VCD+S2△VBD-2S△VBCS△VCDcosβ2-2S△VCDS△VBDcosβ3-2S△VBCS△VBDcosβ1
故答案為:S2△BCD=S2△VBC+S2△VCD+S2△VBD-2S△VBCS△VCDcosβ2-2S△VCDS△VBDcosβ3-2S△VBCS△VBDcosβ1
點(diǎn)評:主要是考查了類比推理的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+bn=0,(n∈N*)的兩根,且a1=1.
(1)求證:數(shù)列{an-
1
3
×2n}
是等比數(shù)列.
(2)設(shè)是Sn數(shù)列{an}的前n項(xiàng)和,問是否存在常數(shù)λ,使得bn-λSn>0對任意n∈N*都成立,若存在,求出λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
c
=
a
b
c
 
.(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是求一個數(shù)a的絕對值的算法并畫出相應(yīng)的流程圖,則判斷框內(nèi)的條件為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
c
=
b
c
a
=
b
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙、丁、戊5人排成一排,則甲不站在排頭的排法有
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,I是內(nèi)心,∠BIC=140°,則∠A的度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的運(yùn)算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第 1次輸出的結(jié)果為24,第2次輸出的結(jié)果為12,第3次輸出的結(jié)果為6,…,第2013次輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象,給出下面四個判斷.
①f(x)在區(qū)間[-2,-1]上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在區(qū)間[-1,2]上是增函數(shù),在區(qū)間[2,4]上是減函數(shù);
④x=2是f(x)的極小值點(diǎn).
其中,所有正確判斷的序號是
 

查看答案和解析>>

同步練習(xí)冊答案