18.若方程$\frac{x^2}{4-k}+\frac{y^2}{k-1}=1$的曲線是橢圓,則k的取值范圍是1<k<4,且k≠$\frac{5}{2}$.

分析 由橢圓方程可得4-k>0,k-1>0,4-k≠k-1,解不等式即可得到所求范圍.

解答 解:由曲線$\frac{x^2}{4-k}+\frac{y^2}{k-1}=1$表示橢圓,
可得$\left\{\begin{array}{l}{4-k>0}\\{k-1>0}\\{4-k≠k-1}\end{array}\right.$,
即$\left\{\begin{array}{l}{k<4}\\{k>1}\\{k≠\frac{5}{2}}\end{array}\right.$,解得1<k<4,且k≠$\frac{5}{2}$.
故答案為:1<k<4,且k≠$\frac{5}{2}$.

點(diǎn)評 本題考查曲線方程表示橢圓求參數(shù)的范圍,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數(shù)關(guān)系t=$\left\{\begin{array}{l}{64,x≤0}\\{{2}^{kx+6},x>0}\end{array}\right.$且該食品在4℃的保鮮時間是16小時.已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示,給出以下四個結(jié)論:
①該食品在6℃的保鮮時間是8小時;
②當(dāng)x∈[-6,6]時,該食品的保鮮時間t隨看x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內(nèi);
④到了此日14時,甲所購買的食品已然過了保鮮時間
其中,所有正確結(jié)論的序號是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若${∫}_{0}^{k}$e3xdx=$\frac{1}{3}$,則正數(shù)k=$\frac{1}{3}$ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等比數(shù)列{an}中,如果a3•a4•a6•a7=81,則a1•a9的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x+a,x≤0}\\{3x-1,x>0}\end{array}\right.$(a∈R),若函數(shù)f(x)在R上有兩個零點(diǎn),則a的取值范圍是( 。
A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,已知A1在底面ABC內(nèi)的射影是線段BC的中點(diǎn),且A1O=OC,BC⊥AA1
(1)證明:四邊形ABB1A1是菱形;
(2)若A1O=OC=2,AO=1,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓F1:(x+1)2+y2=1,圓F2:(x-1)2+y2=25,動圓P與圓F1外切并且與圓F2內(nèi)切,動圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若曲線C與x軸的交點(diǎn)為A1,A2,點(diǎn)M是曲線C上異于點(diǎn)A1,A2的點(diǎn),直線A1M與A2M的斜率分別為k1,k2,求k1k2的值.
(Ⅲ)過點(diǎn)(2,0)作直線l與曲線C交于A,B兩點(diǎn),在曲線C上是否存在點(diǎn)N,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$?若存在,請求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$U=\{y|y={2^x},x≥-1\},A=\{x|\frac{1}{x-1}≥1\}$,則∁UA=( 。
A.$[\frac{1}{2},2]$B.[2,+∞)C.$[\frac{1}{2},1]∪(2,+∞)$D.$[\frac{1}{2},2)∪(2,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A(2,2,0),B(1,4,2),C(0,0,5),求原點(diǎn)O到平面ABC的距離.

查看答案和解析>>

同步練習(xí)冊答案